Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.256
Filtrar
1.
Int J Oncol ; 65(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219273

RESUMEN

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 3 on p. 1510, the western blot images selected to portray the caspase 7 and PARP/cleaved PARP experiments were remarkably similar. After having referred to their original data, the authors realized that the PARP/cleaved PARP blots had been inadvertently duplicated in the figure. The revised version of Fig. 3, showing the correct data for the caspase­7 experiment, is shown below. The authors confirm that the errors made during the assembly of Fig. 3 did not adversely affect the major conclusions presented in this paper, and are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a corrigendum. They also apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 1507­1515, 2015; DOI: 10.3892/ijo.2015.2869].

2.
Ann Clin Lab Sci ; 54(4): 525-532, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39293840

RESUMEN

OBJECTIVE: Cell division cycle 42 (CDC42) modulates inflammation and multiple organ dysfunction by regulating T-cell differentiation and macrophage polarization. This research intended to explore the association of blood CDC42 expression with septic risk, multi-organ dysfunctions, and mortality. METHODS: 145 sepsis patients and 50 health controls were recruited, then CDC42 expression in peripheral blood mononuclear cell (PBMC) from them was measured by RT-qPCR. RESULTS: CDC42 was decreased in sepsis patients versus health controls (P<0.001); meanwhile, the receiver operating characteristic (ROC) curve showed that CDC42 had a certain value to predict sepsis risk with an area under the curve (AUC) (95% confidence interval (CI): 0.797 (0.725-0.869). Furthermore, CDC42 was negatively correlated with C-reactive protein (P<0.001), tumor necrosis factor-alpha (P<0.001) and interleukin-17A (P<0.001) but less with interleukin-6 (P=0.056). Moreover, CDC42 was negatively related to the SOFA score (P<0.001) and its several subscales (respiratory system, liver, cardiovascular, and renal system) (P<0.05). Furthermore, CDC42 was lower in septic deaths versus survivors (P<0.001); meanwhile, the ROC curve exhibited a certain ability of CDC42 in estimating 28-day mortality with an AUC (95%CI) of 0.766 (0.676-0.855). CONCLUSION: Circulating CDC42 exhibits potency to be a prognostic biomarker reflecting multi-organ dysfunctions and higher mortality risk in sepsis.


Asunto(s)
Inflamación , Insuficiencia Multiorgánica , Sepsis , Proteína de Unión al GTP cdc42 , Humanos , Sepsis/mortalidad , Sepsis/sangre , Femenino , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/mortalidad , Insuficiencia Multiorgánica/sangre , Inflamación/sangre , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Susceptibilidad a Enfermedades , Curva ROC , Biomarcadores/sangre , Estudios de Casos y Controles , Anciano , Pronóstico , Adulto , Factores de Riesgo , Leucocitos Mononucleares/metabolismo
4.
Theranostics ; 14(14): 5621-5642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310107

RESUMEN

Rationale: Spermatogenesis is a highly organized cell differentiation process in mammals, involving mitosis, meiosis, and spermiogenesis. DIS3L2, which is primarily expressed in the cytoplasm, is an RNA exosome-independent ribonuclease. In female mice, Dis3l2-deficient oocytes fail to resume meiosis, resulting in arrest at the germinal vesicle stage and complete infertility. However, the role of DIS3L2 in germ cell development in males has remained largely unexplored. Methods: We established a pre-meiotic germ cell conditional knockout mouse model and investigated the biological function of DIS3L2 in spermatogenesis and male fertility through bulk RNA-seq and scRNA-seq analyses. Results: This study unveils that conditional ablation of Dis3l2 in pre-meiotic germ cells with Stra8-Cre mice impairs spermatogonial differentiation and hinders spermatocyte meiotic progression coupled with cell apoptosis. Such conditional ablation leads to defective spermatogenesis and sterility in adults. Bulk RNA-seq analysis revealed that Dis3l2 deficiency significantly disrupted the transcriptional expression pattern of genes related to the cell cycle, spermatogonial differentiation, and meiosis in Dis3l2 conditional knockout testes. Additionally, scRNA-seq analysis indicated that absence of DIS3L2 in pre-meiotic germ cells causes disrupted RNA metabolism, downregulated expression of cell cycle genes, and aberrant expression of spermatogonial differentiation genes, impeding spermatogonial differentiation. In meiotic spermatocytes, loss of DIS3L2 results in disturbed RNA metabolism, abnormal translation, and disrupted meiotic genes that perturb meiotic progression and induce cell apoptosis, leading to subsequent failure of spermatogenesis and male infertility. Conclusions: Collectively, these findings highlight the critical role of DIS3L2 ribonuclease-mediated RNA degradation in safeguarding the correct transcriptome during spermatogonial differentiation and spermatocyte meiotic progression, thus ensuring normal spermatogenesis and male fertility.


Asunto(s)
Infertilidad Masculina , Meiosis , Ratones Noqueados , Espermatogénesis , Animales , Masculino , Espermatogénesis/genética , Ratones , Meiosis/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Diferenciación Celular , Testículo/metabolismo , Espermatocitos/metabolismo , Apoptosis/genética , Espermatogonias/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/genética , Femenino , Ratones Endogámicos C57BL , Células Germinativas/metabolismo
5.
Parkinsonism Relat Disord ; 128: 107153, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39316934

RESUMEN

INTRODUCTION: Anemia may contribute significantly to the onset of Parkinson's disease (PD). Current research on the association between anemia and PD risk is inconclusive, and the relationships between anemia-related blood cell indices and PD incidence require further clarification. This study aims to investigate the relationships between anemia, blood cell indicators, and PD risk using a thorough prospective cohort study. METHODS: We used data from the UK Biobank, a prospective cohort study of 502,649 participants, and ultimately, 365,982 participants were included in the analysis. Cox proportional hazards models were utilized to adjust for confounding factors, aiming to thoroughly explore the associations between anemia and blood cell indices with the risk of incident PD. The interaction between anemia and Polygenic Risk Score (PRS) for PD was also examined. Linear regression and mediation analyses assessed potential mechanisms driven by brain structures, including grey matter volume. RESULTS: During a median follow-up of 14.24 years, 2513 participants were diagnosed with PD. Anemia considerably increased PD risk (hazard ratio [HR] 1.98, 95 % confidence interval [CI]: 1.81-2.18, P < 0.001) after adjustments. Those with high PRS for anemia had an 83 % higher PD incidence compared to low PRS participants. Sensitivity analyses confirmed result robustness. Linear regression showed that anemia correlated with grey matter volumes and most white matter tracts. Furthermore, mediation analyses identified that the volume of grey matter in Thalamus mediates the relationship between anemia and PD risk. CONCLUSION: In summary, we consider there to be a substantial correlation between anemia and increased PD risk.

6.
Phytomedicine ; 134: 155973, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39241384

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE: The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS: A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS: AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1ß (IL-6 and IL-1ß) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION: AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Piruvato Quinasa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Ratones , Piruvato Quinasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Masculino , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
7.
Microbiol Spectr ; : e0095224, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315782

RESUMEN

Colistin is used as a last-line therapy against carbapenem-resistant Klebsiella pneumoniae (CRKP). However, colistin resistance in Klebsiella pneumoniae is increasingly reported worldwide. This study aims to investigate the instrumental role of insertion sequence (IS) elements in colistin resistance through mgrB disruption in K. pneumoniae during treatment. Five clinical isolates of CRKP, designated KPN1~KPN5 were collected from the lower respiratory tract of a patient with chest infection before and after treatment with colistin. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole genome sequencing and bioinformatics were used to analyze the sequence types (STs), resistance genes, and genetic characteristics of the five isolates of K. pneumoniae. Antimicrobial susceptibility testing indicated that all five K. pneumoniae isolates were resistant to cephalosporins (ceftriaxone, ceftazidime, and cefepime), several carbapenems (imipenem, meropenem), cefoperazone-sulbactam, piperacillin-tazobactam, ciprofloxacin, and fosfomycin, whereas they were sensitive to amikacin and tigecycline. In addition, three of these isolates were resistant to colistin, with minimum inhibitory concentration values of >8 mg/L. Whole genome sequencing revealed that all five K. pneumoniae isolates belonged to sequence type 1 (ST1), which shared an identical blaKPC-2. Notably, disruption of mgrB by the ISKpn26 insertion sequence was shown to be the primary colistin resistance mechanism during the treatment. To our knowledge, this is the first report of ISKpn26 element mediating mgrB disruption in the ST1 colistin and CRKP obtained from a patient with chest infection in mainland China. This study provides new research ideas to explore the clinical drug resistance mechanism of CRKP and the critical need to monitor and understand resistance mechanisms to preserve the efficacy of last-line antibiotics such as colistin. IMPORTANCE: Of note, this chapter gives an update on colistin resistance in sequence type 1 Klebsiella pneumoniae, by focusing on the mgrB disrupted by ISKpn26 element.

8.
Front Immunol ; 15: 1413704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308856

RESUMEN

Background: COVID-19 vaccines are crucial for reducing the threat and burden of the pandemic on global public health, yet the epigenetic, especially RNA editing in response to the vaccines remains unelucidated. Results: Our current study performed an epitranscriptomic analysis of RNA-Seq data of 260 blood samples from 102 healthy and SARS-CoV-2 naïve individuals receiving different doses of the COVID-19 vaccine and revealed dynamic, transcriptome-wide adenosine to inosine (A-to-I) RNA editing changes in response to COVID-19 vaccines (RNA editing in response to COVID-19 vaccines). 5592 differential RNA editing (DRE) sites in 1820 genes were identified, with most of them showing up-regulated RNA editing and correlated with increased expression of edited genes. These deferentially edited genes were primarily involved in immune- and virus-related gene functions and pathways. Differential ADAR expression probably contributed to RNA editing in response to COVID-19 vaccines. One of the most significant DRE in RNA editing in response to COVID-19 vaccines was in apolipoprotein L6 (APOL6) 3' UTR, which positively correlated with its up-regulated expression. In addition, recoded key antiviral and immune-related proteins such as IFI30 and GBP1 recoded by missense editing was observed as an essential component of RNA editing in response to COVID-19 vaccines. Furthermore, both RNA editing in response to COVID-19 vaccines and its functions dynamically depended on the number of vaccine doses. Conclusion: Our results thus underscored the potential impact of blood RNA editing in response to COVID-19 vaccines on the host's molecular immune system.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Epigénesis Genética , Edición de ARN , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Adenosina/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Transcriptoma , Adenosina Desaminasa/genética , Masculino , Adulto , Inosina , Femenino
9.
Radiology ; 312(3): e240885, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39287525

RESUMEN

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Diagnóstico por Imagen , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Diagnóstico Diferencial , Diagnóstico por Imagen/métodos , Procesamiento de Lenguaje Natural
10.
Neuroscience ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293730

RESUMEN

Previous studies have demonstrated the roles of both microglia homeostasis and RNA editing in sepsis-associated encephalopathy (SAE), yet their relationship remains to be elucidated. In the current study, we analyzed bulk and single-cell RNA-seq (scRNA) datasets containing 107 brain tissues and microglia samples of mice with microglial depletion and repopulation to explore canonical RNA editing associated with microglia homeostasis and evaluated its role in SAE. Analysis of brain RNA-Seq of mice revealed hallmarks of microglial repopulation, including peak expressions of Apobec1 and Apobec3 at Day 5 and dramatically changed B2m RNA editing. Significant time-dependent changes in brain RNA editing during microglial depletion and microglial repopulation was primarily observed in synaptic genes, such as Tbc1d24 and Slc1a2. ScRNA-Seq revealed heterogeneous RNA editing among microglia subpopulations and their distinct changes associated with microglia homeostasis. Moreover, repopulated microglia from LPS-induced septic mice exhibited intensified up-regulation of Apobec1 and Apobec3, with distinct RNA editing responses to LPS, mainly involved in immune-related pathways. The hippocampus from septic mice induced by peritoneal contamination and infection showed upregulated Apobec1 and Apobec3 expression, and altered RNA editing in immune-related genes, such as B2m and Mier1, and nervous-related lncRNA Meg3 and Snhg11, both of which were repressed by microglial depletion. Moreover, expression of complement-related genes, such as C4b and Cd47, were substantially correlated with RNA editing activity in microglia homeostasis and SAE. Our study demonstrates canonical RNA editing associated with microglia homeostasis, and provides new insight into its potential role in SAE.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39240062

RESUMEN

Nineteen isolates representing a candidate for a novel yeast species belonging to the genus Spencermartinsiella were recovered from rotting wood samples collected at different sites in Atlantic Rainforest and Amazonian Forest ecosystems in Brazil. Similarity search of the nucleotide sequence of the intergenic spacer (ITS)-5.8S and large subunit D1/D2 regions of the ribosomal gene cluster showed that this novel yeast is closely related to Spencermartinsiella cellulosicola. The isolates differ by four nucleotide substitutions in the D1/D2 domain and six substitutions and 31 indels in the ITS region from the holotype of S. cellulosicola. Phylogenomic analysis based on 1474 single-copy orthologues for a set of Spencermartinsiella species whose whole genome sequences are available confirmed that the novel species is phylogenetically close to S. cellulosicola. The low average nucleotide identity value of 83% observed between S. cellulosicola and the candidate species confirms that they are distinct. The novel species produced asci with hemispherical ascospores. The name Spencermartinsiella nicolii sp. nov. is proposed. The holotype is CBS 14238T. The MycoBank number is MB855027. Interestingly, the D1/D2 sequence of the S. nicolii was identical to that of an uncultured strain of Spencermartinsiella causing systemic infection in a male adult crocodile (Crocodylus niloticus). The characterization of some virulence factors and antifungal susceptibility of S. nicolii isolates suggest that this yeast may be an opportunistic pathogen for animals, including humans; the isolates grow at 37 °C.


Asunto(s)
ADN de Hongos , Filogenia , Saccharomycetales , Análisis de Secuencia de ADN , Madera , Brasil , Madera/microbiología , ADN de Hongos/genética , Saccharomycetales/genética , Saccharomycetales/aislamiento & purificación , Saccharomycetales/clasificación , Técnicas de Tipificación Micológica , ADN Espaciador Ribosómico/genética , Bosque Lluvioso , Bosques
12.
Discov Oncol ; 15(1): 436, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264458

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is still one of the most prevalent malignancies. Interleukin factors are closely associated with the initiation and progression of cancer. However, the relationship between interleukin factors and LUAD has not been fully elucidated. This study aimed to use Mendelian randomization (MR) and RNA sequencing (RNA-seq) analyses to identify the interleukin factors associated with the onset and progression of LUAD. METHODS: Exposure-related instrumental variables were selected from interleukin factor summary datasets. The LUAD summary dataset from FINGENE served as the outcome. MR and sensitivity analyses were conducted to screen for interleukin factors associated with LUAD occurrence. Transcriptome analyses revealed the role of interleukin factors in lung tissues. The results were validated through Western blotting and further confirmed with driver gene-negative patients from multiple centers. Potential mechanisms influencing LUAD occurrence and development were explored using bulk RNA-seq and single-cell RNA-seq data. RESULTS: MR analysis indicated that elevated plasma levels of IL6RB, IL27RA, IL22RA1, and IL16 are causally associated with increased LUAD risk, while IL18R1 and IL11RA exhibit the opposite effect. Transcriptome analyses revealed that IL11RA, IL18R1, and IL16 were downregulated in tumor tissues compared with normal lung tissue, but only higher expression of IL11RA correlated with improved prognosis in patients with LUAD from different centers and persisted even in driver-gene negative patients. The IL11RA protein level was lower in various LUAD cell lines than in human bronchial epithelial cells. The genes co-expressed with IL11RA were enriched in the Ras signaling pathway and glycosylation processes. Fibroblasts were the primary IL11RA-expressing cell population, with IL11RA+fibroblasts exhibiting a more immature state. The genes differentially expressed between IL11RA+and IL11RA- fibroblasts were involved in the PI3K-Akt/TNF signaling pathway. CONCLUSION: According to the MR and transcriptome analyses, the downregulation of IL11RA was closely related to the occurrence and development of LUAD.

13.
Nano Lett ; 24(37): 11714-11721, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39240781

RESUMEN

Antiferroelectric materials have shown great potential in electronic devices benefiting from the reversible phase transition between ferroelectric and antiferroelectric phases. Understanding the dipole arrangements and clear phase transition pathways is crucial for design of antiferroelectric materials-based energy storage and conversion devices. However, the specific phase transition details remain largely unclear and even controversial to date. Here, we have grown a series of PbZrO3 on SrTiO3 substrates and elucidated the fine atom structures and phase transition pathways using atomic-resolution transmission electron microscopy. Specifically, a roadmap for ferroelectric to antiferroelectric phase transitions, here with increasing film thickness, is determined as ferroelectric rhombohedral (R3c)-ferroelectric monoclinic (Pc)-ferrielectric orthorhombic (Ima2)-antiferroelectric orthorhombic (Pbam), where Pc and Ima2 phases act as structural bridges. Moreover, the phase transition pathway is strongly related to the synergistic effect of oxygen octahedral tilting and cation displacement. These findings provide an insightful understanding for the theories and related properties of antiferroelectrics.

14.
Int J Biol Macromol ; 279(Pt 4): 135339, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245126

RESUMEN

The CRISPR/Cas9 genome editing tool has been extensively utilized in filamentous fungi, including Trichoderma reesei. However, most existing systems employ constitutive promoters for the expression of Cas9 protein within the cells or directly introduce Cas9 protein into the cells, which often leads to continuous expression of Cas9 resulting in undesired phenotypes or increased operational cost. In this study, we identified a quinic acid (QA)-induced qai5 promoter and employed it to express Cas9, thereby establishing an inducible genome editing system in T. reesei. By utilizing this system, we successfully edited the ypr1 gene and the silent gene cluster involved in ilicicolin H synthesis using donor DNA labeling 41-bp homology arm (HA), resulting in an editing efficiency ranging from 29.2 % to 46.7 %. Consequently, biosynthesis of ilicicolin H was achieved in T. reesei. To summarize, this study presents a novel form of CRISPR/Cas9 genome editing system that enables efficient and controllable genetic modifications in T. reesei.

15.
Int J Med Sci ; 21(11): 2065-2080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239547

RESUMEN

Sarcoma is a rare tumor derived from the mesenchymal tissue and mainly found in children and adolescents. The outcome for patients with sarcoma is relatively poor compared with that for many other solid malignant tumors. Sarcomas have a highly heterogeneous pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequently observed in sarcomas. The telomere maintenance mechanism (TMM) has recently been considered as a prognostic factor for patients with sarcomas, and alternative lengthening of telomeres (ALT) positivity has been correlated with poor outcomes in patients with several types of sarcomas. Therefore, telomeres and telomerases may be useful targets for treating sarcomas. This review aims to provide an overview of telomere and telomerase biology in sarcomas.


Asunto(s)
Sarcoma , Telomerasa , Homeostasis del Telómero , Telómero , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Sarcoma/genética , Sarcoma/terapia , Sarcoma/patología , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Pronóstico , Mutación
16.
Mycology ; 15(3): 400-423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247897

RESUMEN

The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.

17.
Mar Biotechnol (NY) ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249631

RESUMEN

Induced pluripotent stem cells (iPSCs) are a new type of pluripotent cells reprogrammed from somatic cells back into an embryonic-like pluripotent state of stem cells to study development, disease and potential gene therapies. The induction and regulation mechanisms of iPSCs in fish are still unclear. By using the transfection technique, we investigated the crucial function of the OSKMNL factor co-expression for somatic reprogramming in the muscle cell line of large yellow croaker (Larimichthys crocea) (LYCMs) and successfully established a stable iPSCs line (Lc-OSNL-iPSCs). Stable culturing of iPSCs with high alkaline phosphatase activity and a stable karyotype was achieved. The qRT-PCR and immunofluorescence labeling results revealed that Lc-OSNL-iPSCs displayed a high expression level of pluripotent marker genes such as Nanog, Oct4, and Sox2. There were significant differences between Lc-OSNL-iPSCs, Lc-OSKMNL-iPSCs, and LYCMs, and the expression of several genes in maintaining cell pluripotency was up-regulated when the pluripotency signal pathway of stem cells was activated. The technical system for inducing iPSCs of Larimichthys crocea was constructed in this study. This system can serve as a basic model to understand germ cell differentiation mechanism, gender control, genetics, and breeding of large yellow croaker and a platform for studying iPSCs in fish. Interestingly, the acquired iPSCs serves as a useful material for the directional induction of muscle stem cells, thereby establishing the groundwork for obtaining "artificial fish" in the future.

18.
Theor Appl Genet ; 137(9): 211, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210238

RESUMEN

Soybean, a source of plant-derived lipids, contains an array of fatty acids essential for health. A comprehensive understanding of the fatty acid profiles in soybean is crucial for enhancing soybean cultivars and augmenting their qualitative attributes. Here, 180 F10 generation recombinant inbred lines (RILs), derived from the cross-breeding of the cultivated soybean variety 'Jidou 12' and the wild soybean 'Y9,' were used as primary experimental subjects. Using inclusive composite interval mapping (ICIM), this study undertook a quantitative trait locus (QTL) analysis on five distinct fatty acid components in the RIL population from 2019 to 2021. Concurrently, a genome-wide association study (GWAS) was conducted on 290 samples from a genetically diverse natural population to scrutinize the five fatty acid components during the same timeframe, thereby aiming to identify loci closely associated with fatty acid profiles. In addition, haplotype analysis and the Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to predict candidate genes. The QTL analysis elucidated 23 stable QTLs intricately associated with the five fatty acid components, exhibiting phenotypic contribution rates ranging from 2.78% to 25.37%. In addition, GWAS of the natural population unveiled 102 significant loci associated with these fatty acid components. The haplotype analysis of the colocalized loci revealed that Glyma.06G221400 on chromosome 6 exhibited a significant correlation with stearic acid content, with Hap1 showing a markedly elevated stearic acid level compared with Hap2 and Hap3. Similarly, Glyma.12G075100 on chromosome 12 was significantly associated with the contents of oleic, linoleic, and linolenic acids, suggesting its involvement in fatty acid biosynthesis. In the natural population, candidate genes associated with the contents of palmitic and linolenic acids were predominantly from the fatty acid metabolic pathway, indicating their potential role as pivotal genes in the critical steps of fatty acid metabolism. Furthermore, genomic selection (GS) for fatty acid components was conducted using ridge regression best linear unbiased prediction based on both random single nucleotide polymorphisms (SNPs) and SNPs significantly associated with fatty acid components identified by GWAS. GS accuracy was contingent upon the SNP set used. Notably, GS efficiency was enhanced when using SNPs derived from QTL mapping analysis and GWAS compared with random SNPs, and reached a plateau when the number of SNP markers exceeded 3,000. This study thus indicates that Glyma.06G221400 and Glyma.12G075100 are genes integral to the synthesis and regulatory mechanisms of fatty acids. It provides insights into the complex biosynthesis and regulation of fatty acids, with significant implications for the directed improvement of soybean oil quality and the selection of superior soybean varieties. The SNP markers delineated in this study can be instrumental in establishing an efficacious pipeline for marker-assisted selection and GS aimed at improving soybean fatty acid components.


Asunto(s)
Mapeo Cromosómico , Ácidos Grasos , Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/metabolismo , Ácidos Grasos/metabolismo , Mapeo Cromosómico/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Haplotipos , Fitomejoramiento , Genes de Plantas , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo
19.
Environ Int ; 191: 108949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213921

RESUMEN

Ageing is a nature process of microplastics that occurrs daily, and human beings are inevitably exposed to aged microplastics. However, a systematic understanding of ageing status and its toxic effect is currently still lacking. In this study, plastic cup lids-originated polypropylene (PP) microplastics were UV-photoaged until the carbonyl index (CI), a canonical indicator for plastic ageing, achieved 0.08, 0.17, 0.22 and 0.28. The adverse hepatic effect of these aged PPs (aPPs) was evaluated in Balb/c mice (75 ng/mL water, about 200 particles/day) and human-originated liver organoids (LOs, 50 particles/mL, ranged from 5.94 to 13.15 ng/mL) at low-dose equivalent to human exposure level. Low-dose of aged PP could induce hepatic reductive stress both in vitro and in vivo, by elevating the NADH/NAD+ratio in a CI-dependent manner, together with hepatoxicity (indicated by increased AST secretion and cytotoxicity), and disrupted the genes encoding the nutrients transporters and NADH subunits accompanied by the restricted ATP supply, declined mitochondrial membrane potential and mitochondrial complexI/IV activities, without significant increase in MDA levels in the liver. These changes in the liver disrupted systematic metabolism, representing a circulatory panel of increases in the lactate, triglyceride, Fgf21 levels, and decreases in the pyruvate level, linked the reductive stress to the declined body weight gain but elevated hepatic NADH contents following aPPs exposure. Additionally, assessing by the LOs, it was found that digestion drastically accelerated the ageing of aPPs and worsen the energy supply upon mitochondria, representing a "scattergun effect" induced by the formation of micro- and nano-plastics mixture toward NADH/NAD+imbalance.


Asunto(s)
Hígado , Ratones Endogámicos BALB C , Microplásticos , Organoides , Polipropilenos , Animales , Hígado/efectos de los fármacos , Hígado/metabolismo , Microplásticos/toxicidad , Ratones , Organoides/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Masculino
20.
J Phys Chem Lett ; 15(34): 8910-8916, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39172035

RESUMEN

According to the classic superatom model, metal nanoclusters with a "magic number" of free valence electrons display high stability, manifesting as the closed-shell-dependent electronic robustness. The icosahedral nanobuilding blocks containing eight free electrons were the most common in constructing metal nanoclusters; however, the structure defect-dependent variations of the free electron count in icosahedral configurations are still far from thorough research. Here, we reported a hydride-containing [Pt2Ag15(SAdm)4(DPPOE)4H]2+ nanocluster with two largely defective Pt1Ag8 icosahedral cores. Together with previously reported complete or slightly defective icosahedra in metal nanoclusters, the largely defective Pt1Ag8 core provided important clues to reveal the evolutionary mode of structural defects and free electrons in icosahedral nanoclusters; the free electron count of icosahedron was reduced two-by-two (i.e., from 8e to 6e and then to 4e) accompanied by the structure defection. Overall, the work presented a novel Pt2Ag15 nanocluster with a largely defective core structure that enables an atomic-level understanding of the relationship between structural defects and free electrons in icosahedral nanoclusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA