RESUMEN
Phthalates (PAEs) are common environmental endocrine disruptors and environmental bone poisons that can reduce bone mineral density (BMD). The purpose of this study is to investigate whether the concentration of PAE metabolites in urine is related to BMD in many parts of adult bones. We examined a series of cross-sectional data of male (n = 1835) and female (n = 1756) participants aged 18 to 59 years old in the National Health and Nutrition Examination Survey from 2011 to 2018 and measured urine PAE metabolites and dual-energy X-ray absorption to determine BMD (total body, lumbar spine, and pelvis). We used linear regression to test the correlation between a single phthalate biomarker and BMD. After adjusting all confounding variables, MEHP was positively correlated with BMD of total body, lumbar spine and pelvis, and BMD levels of the total body, lumbar spine and pelvis decreased with the increase of MECPP concentration. We used the restricted cubic spline function to test the nonlinear correlation between PAE biomarkers and BMD. The results show that urinary PAE metabolites have a nonlinear relationship with total body BMD, lumbar spine BMD, and pelvic BMD. With the increase in the PAE concentration, the BMD level first increased and then decreased, showing an inverted U-shaped trend (P < 0.05). Gender stratification also shows the same related trend. PAEs may be related to the BMD of adults. When the concentration of PAEs increases to a certain threshold, it will lead to a significant decrease in BMD.
RESUMEN
PURPOSE: To develop and validate a nomogram based on 3D-PDU parameters and clinical characteristics to predict LNM and LVSI in early-stage cervical cancer preoperatively. MATERIALS AND METHODS: A total of first diagnosis 138 patients with cervical cancer who had undergone 3D-PDU examination before radical hysterectomy plus lymph dissection between 2014 and 2019 were enrolled for this study. Multivariate logistic regression analyses were performed to analyze the 3D-PDU parameters and selected clinicopathologic features and develop a nomogram to predict the probability of LNM and LVSI in the early stage. ROC curve was used to evaluate model differentiation, calibration curve and Hosmer-Lemeshow test were used to evaluate calibration, and DCA was used to evaluate clinical practicability. RESULTS: Menopause status, FIGO stage and VI were independent predictors of LNM. BMI and maximum tumor diameter were independent predictors of LVSI. The predicted AUC of the LNM and LSVI models were 0.845 (95%CI,0.765-0.926) and 0.714 (95%CI,0.615-0.813). Calibration curve and H-L test (LNM groups P = 0.478; LVSI P = 0.783) all showed that the predicted value of the model had a good fit with the actual observed value, and DCA indicated that the model had a good clinical net benefit. CONCLUSION: The proposed nomogram based on 3D-PDU parameters and clinical characteristics has been proposed to predict LNM and LVSI with high accuracy, demonstrating for the first time the potential of non-invasive prediction. The probability derived from this nomogram may have the potential to provide valuable guidance for physicians to develop clinical individualized treatment plans of FIGO patients with early cervical cancer.
Asunto(s)
Metástasis Linfática , Nomogramas , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/diagnóstico , Metástasis Linfática/patología , Persona de Mediana Edad , Adulto , Imagenología Tridimensional/métodos , Histerectomía/métodos , Estadificación de Neoplasias , Escisión del Ganglio Linfático/métodos , Ultrasonografía/métodos , Invasividad Neoplásica , Ganglios Linfáticos/patología , Estudios Retrospectivos , Anciano , Valor Predictivo de las PruebasRESUMEN
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca markedly enhanced root and shoot morphological traits and improved plant biomass under salt stress. Chlorophyll a and b content were significantly increased, which improved photosynthetic capacity. Transcriptomic and metabolomic data showed that Pro-Ca significantly up-regulated the expression of genes involved in E3 ubiquitin ligases in IR29 and HD96-1 by 2.5-fold and 3-fold, respectively, thereby maintaining Na+ and K+ homeostasis by reducing Na+. Moreover, Pro-Ca treatment significantly down-regulated the expression of Lhcb1, Lhcb2, Lhcb3, Lhcb5, and Lhcb6 in IR29 under salt stress, which led to an increase in photosynthetic efficiency. Furthermore, salt stress + Pro-Ca significantly increased the A-AAR of IR29 and HD96-1 by 2.9-fold and 2.5-fold, respectively, and inhibited endogenous cytokinin synthesis and signal transduction, which promoted root growth. The current findings suggested that Pro-Ca effectively alleviated the harmful effects of salt stress on rice by maintaining abscisic acid content and by promoting oxylipin synthesis. This study provides a molecular basis for Pro-Ca to alleviate salt stress in rice.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Tolerancia a la Sal , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Calcio/metabolismo , Estrés Salino , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
Information accessibility is a pivotal factor influencing farmers' adoption of Agricultural Green Production Technologies (AGPT). However, the widespread issue of information poverty presents a significant obstacle to this adoption process, thereby hindering the progression towards sustainable agricultural development. To address this information deficit, farmers have begun to utilize the Internet and participate in government-led onsite assembly training programs to acquire the necessary knowledge. Yet there is still a lack of research evidence on the effectiveness and comparative advantages of internet and offline training. This study explores the impact of various information access channels on farmers' adoption of green production technologies in agriculture, focusing on a sample of 731 family farms located in Sichuan Province. The issue of endogeneity was addressed using the Conditional Mixed Process Estimation Method. The sample underwent a t-test and heterogeneity analysis. The findings revealed that both internet-based information access and participation in training significantly bolstered farmers' adoption of AGPT, with the former proving to be more effective. Notably, heterogeneity was observed among farmers, differentiated by age and the number of village cadres within their family units.
Asunto(s)
Agricultura , Agricultores , Humanos , China , Agricultura/métodos , Persona de Mediana Edad , Masculino , Femenino , Adulto , InternetRESUMEN
With the progress in techniques for correcting errors in quantum computing, quantum low density parity check (QLDPC) codes have gained increasing significance within the field of quantum error correction. This paper focuses on different strategies for the construction of QLDPC codes, which are based on all points and lines as well as partial points and lines from projective geometry. Finally, a series of simulation analyses are presented.
RESUMEN
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Asunto(s)
Productos Biológicos , Factor 2 Relacionado con NF-E2 , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéuticoRESUMEN
The effect of functional variants in long non-coding RNA (lncRNA) gene regions on autism spectrum disorder (ASD) remains unclear. The present study aimed to investigate the association of functional variants located in lncRNA genes with the risk of ASD and explore whether gut microbiota would mediate the relationship. A total of 87 cases and 71 healthy controls were enrolled in the study. MassARRAY platform and 16S rRNA sequencing were respectively applied to assess the genotype of candidate SNPs and gut microbiota of children. The logistic regression models showed that the association between rs2295412 and the risk of ASD was statistically significant after Bonferroni adjustments. The risk of ASD decreased by 19% for each additional C allele carried by children in multiplicative models (OR = 0.81, 95% CI, 0.69-0.94, P = 0.007). Although we identified significant correlations between rs8113922 polymorphisms, Bifidobacteriales, and ASD, the mediating effect of gut microbiota on the relationship of the polymorphisms with the risk of ASD was not significant. The findings demonstrated that functional variants in lncRNA genes play an important role in ASD and gut microbiota could not mediate the association. Future studies are warranted to verify the results and search for more possible mechanisms of variants located in lncRNA genes implicated in ASD.
RESUMEN
Beyond traditional paper, multifunctional nanopaper has received much attention in recent years. Currently, many nanomaterials have been successfully used as building units of nanopaper. However, it remains a great challenge to prepare flexible and freestanding metal-organic framework (MOF) nanopaper owing to the low aspect ratio and brittleness of MOF nanocrystals. Herein, this work develops a flexible and free-standing MOF nanopaper with MOF nanowires as building units. The manganese-based MOF (Mn-MOF) nanowires with lengths up to 100 µm are synthesized by a facile solvothermal method. Through a paper-making technique, the Mn-MOF nanowires interweave with each other to form a three-dimensional architecture, thus creating a flexible and free-standing Mn-MOF nanowire paper. Furthermore, the surface properties can be engineered to obtain high hydrophobicity by modifying polydimethylsiloxane (PDMS) on the surfaces of the Mn-MOF nanowire paper. The water contact angle reaches 130°. As a proof of concept, this work presents two potential applications of the Mn-MOF/PDMS nanowire paper: (i) The as-prepared Mn-MOF/PDMS nanowire paper is compatible with a commercial printer. The as-printed colorful patterns are of high quality, and (ii) benefiting from the highly hydrophobic surfaces, the Mn-MOF/PDMS nanowire paper is able to efficiently separate oil from water.
RESUMEN
BACKGROUND: We aimed to examine the associations between depressive symptoms and physical activity parameters (e.g., intensity, frequency, and duration) among Chinese school-aged children. METHOD: Participants in this study were extracted from the Tongji Mental Health Cohort Study. The baseline survey was conducted in June 2020 involving 2588 school-aged children from two primary schools in Hubei Province, China. A total of 2435 children were followed up successfully in December 2020. The Children's Depression Inventory Short Form (CDI-S) was applied to evaluate depressive symptoms among school-aged children. The Physical Activity Rating Scale-3 (PARS-3) was adopted to estimate children's physical activity parameters including the intensity, frequency, and duration. Generalized estimation equation models were used to explore the longitudinal associations between physical activity and depressive symptoms among school-aged children. RESULTS: Engaging in moderate levels of physical activity (OR, 0.800; 95%CI, 0.692-0.924) or high levels of physical activity (OR, 0.808; 95%CI, 0.689-0.947) in the baseline survey was associated with a reduced risk of developing depressive symptoms in the follow-up survey compared with children engaging in low levels of physical activity. Stratified analyses revealed that the associations between physical activity and depressive symptoms exhibited a significant correlation among boys and children in the older age group (11-12 years). Our findings showed that engaging in physical activity more than once a week, with each session lasting 20 min or longer, was related to significant reductions in depressive symptoms by 43.8% and 22.3%, respectively. CONCLUSION: Self-reported physical activity is positively associated with improved mental health among Chinese school-aged children, especially when considering parameters such as frequency and duration. The association between vigorous-intensity physical activity and depressive symptoms in children should be cautiously interpreted. Future research should continue to explore the effects of vigorous-intensity physical activity on depressive symptoms in children.
RESUMEN
Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.
Asunto(s)
Aterosclerosis , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Factores de Transcripción STAT/metabolismo , Quinasas Janus/metabolismo , Animales , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Mediadores de Inflamación/metabolismoRESUMEN
Benzene, toluene, ethylbenzene, and xylene (BTEX) are ubiquitous in the environment, and all of them can cause neurotoxicity. However, the association between BTEX exposure and dyslexia, a disorder with language network-related regions in left hemisphere affected, remains unclear. We aimed to assess the relationship between BTEX exposure and dyslexic odds among school-aged children. A case-control study, including 355 dyslexics and 390 controls from three cities in China, was conducted. Six BTEX metabolites were measured in their urine samples. Logistic regression model was used to explore the association between the BTEX metabolites and the dyslexic odds. Urinary trans,trans-muconic acid (MU: a metabolite of benzene) was significantly associated with an increased dyslexic odds [odds ratio (OR) = 1.23, 95% confidence interval (CI): 1.01, 1.50], and the adjusted OR of the dyslexic odds in the third tertile was 1.72 (95% CI: 1.06, 2.77) compared to that in the lowest tertile regarding urinary MU concentration. Furthermore, the association between urinary MU level and the dyslexic odds was more pronounced among children from low-income families based on stratified analyses. Urinary metabolite levels of toluene, ethylbenzene, and xylene were not found to be associated with the dyslexic odds. In summary, elevated MU concentrations may be associated with an increased dyslexic odds. We should take measures to reduce MU related exposure among children, particularly those with low family income.
Asunto(s)
Derivados del Benceno , Benceno , Dislexia , Tolueno , Xilenos , Niño , Femenino , Humanos , Masculino , Derivados del Benceno/orina , Estudios de Casos y Controles , China , Dislexia/orina , Exposición a Riesgos Ambientales , Oportunidad Relativa , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Tolueno/orina , Xilenos/orinaRESUMEN
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Asunto(s)
Dislexia , Exposición a Riesgos Ambientales , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/orina , Niño , Masculino , Femenino , Dislexia/inducido químicamente , China , Contaminantes Ambientales/orina , Instituciones Académicas , Pueblos del Este de AsiaRESUMEN
Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.
Asunto(s)
Inmunoterapia , Melaninas , Animales , Inmunoterapia/métodos , Ratones , Escherichia coli/genética , Escherichia coli/metabolismo , Línea Celular Tumoral , Ingeniería Genética , Terapia Fototérmica/métodos , Ratones Endogámicos BALB C , Fototerapia/métodos , Neoplasias/terapia , Femenino , Nanopartículas/químicaRESUMEN
It has been found that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the risk of certain childhood neurodevelopmental disorders. However, no research has investigated the relationship between exposure to PAHs and children's dyslexia odds. The objective of this research was to investigate whether urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are associated with increased dyslexia odds in Chinese children. We recruited 1,089 children (542 dyslexic children and 547 non-dyslexic children) for this case-control study. Ten OH-PAHs were measured in the participants' urine samples, which were collected between November 2017 and March 2023. Odds ratios (ORs) of the associations between the OH-PAHs and dyslexia were calculated using logistic regression models, after adjustment for the potential confounding factors. A significant association was found between urinary concentrations of 2-hydroxynaphthalene (2-OHNap) and the elevated odds of dyslexia. The children in the highest quartile of 2-OHNap had a higher OR of dyslexia (1.87, 95% CI: 1.07-3.27) than those in the lowest quartile (P-trend = 0.02) after adjustment for the covariates. After excluding children with maternal disorders during pregnancy, logistic regression analyses showed similar results. Our results suggested a possible association between PAH exposure and the elevated odds of dyslexia.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Niño , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Exposición a Riesgos Ambientales/análisis , Estudios de Casos y Controles , China/epidemiología , Modelos Logísticos , Biomarcadores/orinaRESUMEN
Organophosphates (OPPs), pyrethroids (PYRs), and neonicotinoids (NNIs) are three major classes of insecticides used worldwide. They might compromise child neurodevelopment. However, few studies have explored the association between exposure to them and dyslexia. The present study aimed to investigate the association between dyslexia and exposure to the three classes of insecticides, as well as explore the potential role of oxidative stress in the association. A total of 355 dyslexic children and 390 controls were included in this study. The exposure biomarkers were determined by liquid chromatography-tandem mass spectrometry. Specifically, the exposure biomarkers included three typical metabolites of OPPs, three of PYRs, and nine of NNIs. Additionally, three typical oxidative stress biomarkers, namely, 8-hydroxy-2'-deoxyguanosine (8-OHdG) for DNA damage, 8-hydroxyguanosine (8-OHG) for RNA damage, and 4-hydroxy-2-nonenal-mercapturic acid (HNEMA) for lipid peroxidation were measured. The detection frequencies of the urinary biomarkers ranged from 83.9% to 100%. Among the target metabolites of the insecticides, a significant association was observed between urinary 3,5,6-trichloro-2-pyridinol (TCPy, the metabolite of chlorpyrifos, an OPP insecticide) and dyslexia. After adjusting for potential confounding variables, children in the highest quartile of TCPy levels had an increased odds of dyslexia (odds ratio [OR], 1.68; 95% confidence interval [CI]: 1.03, 2.75] in comparison to those in the lowest quartile. Among the three oxidative stress biomarkers, urinary HNEMA concentration showed a significant relationship with dyslexia. Children in the highest quartile of HNEMA levels demonstrated an increased dyslexic odds in comparison to those in the lowest quartile after multiple adjustments (OR, 1.64; 95% CI: 1.01, 2.65). Mediation analysis indicated a significant effect of HNEMA in the association between urinary TCPy and dyslexia, with an estimate of 17.2% (P < 0.01). In conclusion, this study suggested the association between urinary TCPy and dyslexia. The association could be attributed to lipid peroxidation partially.
Asunto(s)
Cloropirifos , Dislexia , Insecticidas , Piretrinas , Niño , Humanos , Insecticidas/toxicidad , Piretrinas/toxicidad , Cloropirifos/toxicidad , Neonicotinoides , Estrés Oxidativo , BiomarcadoresRESUMEN
The design and development of ultra-accurate probe is of great significance to chemical sensing in complex practical scenarios. Here, a self-accelerating naphthalimide-based probe with fast response and high sensitivity toward hydrogen peroxide (H2O2) is designed. By coupling with the specially selected upconversion nanoparticles (UCNPs), an ultra-accurate colorimetric-fluorescent-upconversion luminescence (UCL) tri-mode platform is constructed. Owing to the promoted reaction process, this platform demonstrates rapid response (< 1 s), an ultra-low detection limit (4.34 nM), and superb anti-interferent ability even in presence of > 21 types of oxidants, explosives, metallic salts, daily compounds, colorful or fluorescent substances. In addition, the effectiveness of this design is further verified by a sponge-based sensing chip loaded with the UCNPs/probe in recognizing trace H2O2 vapor from interferents with the three characteristic colors existing simultaneously. The proposed design of probe and tri-mode visualization detection platform is expected to open up a brand-new methodology for ultra-accurate sensing.
RESUMEN
Varicose veins (VVs) have a high prevalence worldwide and have become a major medical burden. Their pathophysiology involves a complex interplay of inflammation and tissue remodeling, and current treatment is limited by its impact on the pathophysiological mechanisms. In addition, despite clear environmental factors, family history is an important risk factor, suggesting a genetic component to the risk of developing VVs. Our understanding of the pathogenesis of these diseases has benefited greatly from the expansion of population genetic studies, from pioneering family studies to large genome-wide association studies; we now find multiple risk loci for each venous disease. This review considers the pathophysiology of VVs, highlighting the current state of genetic knowledge. We also propose future directions for research.
RESUMEN
Hydrogen-Bonded organic frameworks (HOFs) are a type of emerging porous materials. At present, little research has been conducted on their solution state. This work demonstrates that HOFs fragment into small particles while maintaining their original assemblies upon dispersing in solvents, as confirmed by Cryo-electron microscopy coupled with 3D electron diffraction technology. 1D and 2D-Nuclear Magnetic Resonance (NMR) and zeta potential analyses indicate the HOF-based colloid solution and the isolated molecular solution have significant differences in intermolecular interactions and aggregation behavior. Such unique solution processibility allows for fabricating diverse continuous HOF membranes with high crystallinity and porosity through solution-casting approach on various substrates. Among them, HOF-BTB@AAO membranes show high C3H6 permeance (1.979 × 10-7 mol·s-1·m-2·Pa-1) and excellent separation performance toward C3H6 and C3H8 (SF = 14). This continuous membrane presents a green, low-cost, and efficient separation technology with potential applications in petroleum cracking and purification.
RESUMEN
Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.
RESUMEN
This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.