RESUMEN
Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.
Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Niger , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota/genética , Petróleo/metabolismo , Hidrocarburos/metabolismo , Suelo/química , ADN/metabolismoRESUMEN
The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.
RESUMEN
Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme diiron monooxygenase (AlkB) with a diiron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.