Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
PLoS Biol ; 22(9): e3002802, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39255311

RESUMEN

Mitosis is an important process in the cell cycle required for cells to divide. Never in mitosis (NIMA)-like kinases (NEKs) are regulators of mitotic functions in diverse organisms. Plasmodium spp., the causative agent of malaria is a divergent unicellular haploid eukaryote with some unusual features in terms of its mitotic and nuclear division cycle that presumably facilitate proliferation in varied environments. For example, during the sexual stage of male gametogenesis that occurs within the mosquito host, an atypical rapid closed endomitosis is observed. Three rounds of genome replication from 1N to 8N and successive cycles of multiple spindle formation and chromosome segregation occur within 8 min followed by karyokinesis to generate haploid gametes. Our previous Plasmodium berghei kinome screen identified 4 Nek genes, of which 2, NEK2 and NEK4, are required for meiosis. NEK1 is likely to be essential for mitosis in asexual blood stage schizogony in the vertebrate host, but its function during male gametogenesis is unknown. Here, we study NEK1 location and function, using live cell imaging, ultrastructure expansion microscopy (U-ExM), and electron microscopy, together with conditional gene knockdown and proteomic approaches. We report spatiotemporal NEK1 location in real-time, coordinated with microtubule organising centre (MTOC) dynamics during the unusual mitoses at various stages of the Plasmodium spp. life cycle. Knockdown studies reveal NEK1 to be an essential component of the MTOC in male cell differentiation, associated with rapid mitosis, spindle formation, and kinetochore attachment. These data suggest that P. berghei NEK1 kinase is an important component of MTOC organisation and essential regulator of chromosome segregation during male gamete formation.


Asunto(s)
Cinetocoros , Centro Organizador de los Microtúbulos , Mitosis , Quinasa 1 Relacionada con NIMA , Plasmodium berghei , Masculino , Cinetocoros/metabolismo , Animales , Quinasa 1 Relacionada con NIMA/metabolismo , Quinasa 1 Relacionada con NIMA/genética , Plasmodium berghei/fisiología , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Segregación Cromosómica , Gametogénesis , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética
2.
PLoS Comput Biol ; 20(9): e1012469, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288189

RESUMEN

Significant variations have been observed in viral copies generated during SARS-CoV-2 infections. However, the factors that impact viral copies and infection dynamics are not fully understood, and may be inherently dependent upon different viral and host factors. Here, we conducted virus whole genome sequencing and measured viral copies using RT-qPCR from 9,902 SARS-CoV-2 infections over a 2-year period to examine the impact of virus genetic variation on changes in viral copies adjusted for host age and vaccination status. Using a genome-wide association study (GWAS) approach, we identified multiple single-nucleotide polymorphisms (SNPs) corresponding to amino acid changes in the SARS-CoV-2 genome associated with variations in viral copies. We further applied a marginal epistasis test to detect interactions among SNPs and identified multiple pairs of substitutions located in the spike gene that have non-linear effects on viral copies. We also analyzed the temporal patterns and found that SNPs associated with increased viral copies were predominantly observed in Delta and Omicron BA.2/BA.4/BA.5/XBB infections, whereas those associated with decreased viral copies were only observed in infections with Omicron BA.1 variants. Our work showcases how GWAS can be a useful tool for probing phenotypes related to SNPs in viral genomes that are worth further exploration. We argue that this approach can be used more broadly across pathogens to characterize emerging variants and monitor therapeutic interventions.

3.
Plants (Basel) ; 13(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39204632

RESUMEN

Gymnosperms originated in the Middle Devonian and have experienced a long evolutionary history with pulses of speciation and extinction, which resulted in the four morphologically distinct extant groups, i.e., cycads, Ginkgo, conifers and gnetophytes. For over a century, the systematic relationships within the extant gymnosperms have been debated because different authors emphasized different characters. Recent phylogenomic studies of gymnosperms have given a consistent topology, which aligns well with extant gymnosperms classified into three classes, five subclasses, eight orders, and 13 families. Here, we review the historical opinions of systematics of gymnosperms with special reference to several problematic taxa and reconsider the evolution of some key morphological characters previously emphasized by taxonomists within a phylogenomic context. We conclude that (1) cycads contain two families, i.e., the Cycadaceae and the Zamiaceae; (2) Ginkgo is sister to cycads but not to conifers, with the similarities between Ginkgo and conifers being the result of parallel evolution including a monopodial growth pattern, pycnoxylic wood in long shoots, and the compound female cones, and the reproductive similarities between Ginkgo and cycads are either synapomorphic or plesiomorphic, e.g., the boat-shaped pollen, the branched pollen tube, and the flagellate sperms; (3) conifers are paraphyletic with gnetophytes nested within them, thus gnetophytes are derived conifers, and our newly delimited coniferophytes are equivalent to the Pinopsida and include three subclasses, i.e., Pinidae, Gnetidae, and Cupressidae; (4) fleshy cones of conifers originated multiple times, the Podocarpaceae are sister to the Araucariaceae, the Cephalotaxaceae and the Taxaceae comprise a small clade, which is sister to the Cupressaceae; (5) the Cephalotaxaceae are distinct from the Taxaceae, because the former family possesses typical female cones and the fleshy part of the seed is derived from the fleshiness of integument, while the latter family has reduced female cones and preserves no traces of the seed scale complexes.

4.
J Forensic Sci ; 69(5): 1871-1879, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38984820

RESUMEN

Opium poppy, coca and cannabis are raw materials for three notorious illicit drugs. For a long time, drug lords have been growing and smuggling these drugs in a variety of ways and channels and are continually finding new ways of trafficking their wares, which has led to the increasing difficulty of global drug enforcement. In the present paper, we propose an innovative pollen identification system for these important drug plants, which provides a tool for screening and detection of the drugs to aid in drug enforcement. By utilizing the characteristics of these fine particles, their abundant production, and high resistance to decay, we believe this tool could be applied in the following scenarios: detecting and dynamically monitoring drug cultivation activities; determining whether a suspect has been to fields of drug plants and determining whether the site has ever been planted with a drug plant and/or was involved in drug production. In the future, combined with microscope automatic image acquisition technology and intelligent image recognition technology, this pollen identification system is expected to be used to screen three notorious illicit drug plants, thus enhancing the efficiency of drug related crime investigations.


Asunto(s)
Cannabis , Coca , Tráfico de Drogas , Drogas Ilícitas , Papaver , Polen , Humanos , Coca/química , Papaver/química , Opio , Ciencias Forenses/métodos
5.
bioRxiv ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38826480

RESUMEN

One of the defining features of apicomplexan parasites is their cytoskeleton composed of alveolar vesicles, known as the inner membrane complex (IMC) undergirded by intermediate-like filament network and an array of subpellicular microtubules (SPMTs). In Toxoplasma gondii, this specialized cytoskeleton is involved in all aspects of the disease-causing lytic cycle, and notably acting as a scaffold for parasite offspring in the internal budding process. Despite advances in our understanding of the architecture and molecular composition, insights pertaining to the coordinated assembly of the scaffold are still largely elusive. Here, T. gondii tachyzoites were dissected by advanced, iterative expansion microscopy (pan-ExM) revealing new insights into the very early sequential formation steps of the tubulin scaffold. A comparative study of the related parasite Sarcocystis neurona revealed that different MT bundling organizations of the nascent SPMTs correlate with the number of central and basal alveolar vesicles. In absence of a so far identified MT nucleation mechanism, we genetically dissected T. gondii γ-tubulin and γ-tubulin complex protein 4 (GCP4). While γ-tubulin depletion abolished the formation of the tubulin scaffold, a set of MTs still formed that suggests SPMTs are nucleated at the outer core of the centrosome. Depletion of GCP4 interfered with the correct assembly of SPMTs into the forming daughter buds, further indicating that the parasite utilizes the γ-tubulin complex in tubulin scaffold formation .

6.
Hum Mol Genet ; 33(18): 1605-1617, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888340

RESUMEN

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Reparación del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Ratones Transgénicos , Fenotipo , Animales , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación del ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena
7.
Bone Joint J ; 106-B(5 Supple B): 133-138, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688506

RESUMEN

Aims: Dual-mobility acetabular components (DMCs) have improved total hip arthroplasty (THA) stability in femoral neck fractures (FNFs). In osteoarthritis, the direct anterior approach (DAA) has been promoted for improving early functional results compared with the posterolateral approach (PLA). The aim of this study was to compare these two approaches in FNF using DMC-THA. Methods: A prospective continuous cohort study was conducted on patients undergoing operation for FNF using DMC by DAA or PLA. Functional outcome was evaluated using the Harris Hip Score (HHS) and Parker score at three months and one year. Perioperative complications were recorded, and radiological component positioning evaluated. Results: There were 50 patients in the DAA group and 54 in the PLA group. The mean HHS was 85.5 (SD 8.8) for the DAA group and 81.8 (SD 11.9) for the PLA group (p = 0.064). In all, 35 patients in the DAA group and 40 in the PLA group returned to their pre-fracture Parker score (p = 0.641) in both groups. No statistically significant differences between groups were found at one year regarding these two scores (p = 0.062 and p = 0.723, respectively). The DAA was associated with more intraoperative complications (p = 0.013). There was one dislocation in each group, and four revisions for DAA and one for PLA, but this difference was not statistically significant. There were also no significant differences regarding blood loss, length of stay, or operating time. Conclusion: In DMC-THA for FNF, DAA did not achieve better functional results than PLA, either at three months or at one year. Moreover, DAA presented an increased risk of intra-operative complications.


Asunto(s)
Acetábulo , Artroplastia de Reemplazo de Cadera , Fracturas del Cuello Femoral , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Masculino , Femenino , Fracturas del Cuello Femoral/cirugía , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Acetábulo/cirugía , Acetábulo/lesiones , Prótesis de Cadera , Resultado del Tratamiento , Anciano de 80 o más Años , Complicaciones Posoperatorias/etiología , Diseño de Prótesis
8.
Plant Divers ; 46(1): 144-148, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38343589

RESUMEN

•The first reported mitochondrial genome (Cinnamomum chekiangense) of the Lauraceae family.•The mitogenome of C. chekiangense retains almost all of the ancestral protein-coding genes and has the highest RNA editing number in angiosperms.•Both of the plastid and mitochondrial phylogenetic trees support the magnoliids as a sister group of monocots and eudicots.

9.
Bone Joint J ; 106-B(3): 224-226, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423116
10.
Med Sci Sports Exerc ; 56(6): 1066-1076, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233993

RESUMEN

INTRODUCTION: Early life growth restriction significantly increases the risk of adulthood physical inactivity and thereby chronic disease incidence. Improvements in motor skill acquisition could result in greater physical activity engagement in the growth-restricted population, thus reducing chronic disease risk. The purpose of this study was to implement an early life motor training intervention to improve physical activity engagement in control and growth-restricted mice. METHODS: Mice were growth restricted in early life utilizing a validated nutritive model or remained fully nourished in early life as a control. All mice were tested throughout early life for various components of motor skill acquisition. On postnatal day 10, mice were randomly assigned to engage in an early life motor skill intervention daily until postnatal day 21 or remained as a sedentary control. All mice were given access to an in-cage running wheel from postnatal days 45-70. RESULTS: Growth-restricted group (PGR) mice had impaired trunk and postural control, coordination/vestibular development, and hindlimb strength in early life compared with control mice. There were no differences in wheel running behavior between the trained and sedentary mice, although control mice ran at a faster average speed compared with PGR mice. Control female mice ran more than PGR female mice during the week 2 dark cycle. CONCLUSIONS: Early life growth restriction reduced motor skill attainment throughout early life, which may be associated with reduced ability to engage in physical activity in adulthood. The early life motor skill intervention did not elicit changes in body weight or physical activity engagement in control or PGR mice, indicating that a more intense/different intervention specifically targeting skeletal muscle may be necessary to counteract the detrimental effects of early life growth restriction.


Asunto(s)
Destreza Motora , Condicionamiento Físico Animal , Animales , Destreza Motora/fisiología , Femenino , Condicionamiento Físico Animal/fisiología , Masculino , Ratones , Equilibrio Postural/fisiología , Fuerza Muscular/fisiología , Ratones Endogámicos C57BL
11.
Exp Physiol ; 109(4): 562-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180279

RESUMEN

Postnatal growth restriction (PGR) can increase the risk of cardiovascular disease (CVD) potentially due to impairments in oxidative phosphorylation (OxPhos) within cardiomyocyte mitochondria. The purpose of this investigation was to determine if PGR impairs cardiac metabolism, specifically OxPhos. FVB (Friend Virus B-type) mice were fed a normal-protein (NP: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce ∼20% less milk, and pups nursed by LP dams experience reduced growth into adulthood as compared to pups nursed by NP dams. At birth (PN1), pups born to dams fed the NP diet were transferred to LP dams (PGR group) or a different NP dam (control group: CON). At weaning (PN21), all mice were fed the NP diet. At PN22 and PN80, mitochondria were isolated for respirometry (oxygen consumption rate, J O 2 ${J_{{{\mathrm{O}}_{\mathrm{2}}}}}$ ) and fluorimetry (reactive oxygen species emission, J H 2 O 2 ${J_{{{\mathrm{H}}_{\mathrm{2}}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) analysis measured as baseline respiration (LEAK) and with saturating ADP (OxPhos). Western blotting at PN22 and PN80 determined protein abundance of uncoupling protein 3, peroxiredoxin-6, voltage-dependent anion channel and adenine nucleotide translocator 1 to provide further insight into mitochondrial function. ANOVAs with the main effects of diet, sex and age with α-level of 0.05 was set a priori. Overall, PGR (7.8 ± 1.1) had significant (P = 0.01) reductions in respiratory control in complex I when compared to CON (8.9 ± 1.0). In general, our results show that PGR led to higher electron leakage in the form of free radical production and reactive oxygen species emission. No significant diet effects were found in protein abundance. The observed reduced respiratory control and increased ROS emission in PGR mice may increase risk for CVD in mice.


Asunto(s)
Enfermedades Cardiovasculares , Mitocondrias Cardíacas , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Dieta con Restricción de Proteínas
12.
Bone Jt Open ; 5(1): 69-77, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269598

RESUMEN

Aims: The management of fractures of the medial epicondyle is one of the greatest controversies in paediatric fracture care, with uncertainty concerning the need for surgery. The British Society of Children's Orthopaedic Surgery prioritized this as their most important research question in paediatric trauma. This is the protocol for a randomized controlled, multicentre, prospective superiority trial of operative fixation versus nonoperative treatment for displaced medial epicondyle fractures: the Surgery or Cast of the EpicoNdyle in Children's Elbows (SCIENCE) trial. Methods: Children aged seven to 15 years old inclusive, who have sustained a displaced fracture of the medial epicondyle, are eligible to take part. Baseline function using the Patient-Reported Outcomes Measurement Information System (PROMIS) upper limb score, pain measured using the Wong Baker FACES pain scale, and quality of life (QoL) assessed with the EuroQol five-dimension questionnaire for younger patients (EQ-5D-Y) will be collected. Each patient will be randomly allocated (1:1, stratified using a minimization algorithm by centre and initial elbow dislocation status (i.e. dislocated or not-dislocated at presentation to the emergency department)) to either a regimen of the operative fixation or non-surgical treatment. Outcomes: At six weeks, and three, six, and 12 months, data on function, pain, sports/music participation, QoL, immobilization, and analgesia will be collected. These will also be repeated annually until the child reaches the age of 16 years. Four weeks after injury, the main outcomes plus data on complications, resource use, and school absence will be collected. The primary outcome is the PROMIS upper limb score at 12 months post-randomization. All data will be obtained through electronic questionnaires completed by the participants and/or parents/guardians. The NHS number of participants will be stored to enable future data linkage to sources of routinely collected data (i.e. Hospital Episode Statistics).

13.
Nat Commun ; 14(1): 8263, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092766

RESUMEN

Gametogenesis in Plasmodium spp. occurs within the Anopheles mosquito and is essential for sexual reproduction / differentiation and onwards transmission to mammalian hosts. To better understand the 3D organisation of male gametogenesis, we used serial block face scanning electron microscopy (SBF-SEM) and serial-section cellular electron tomography (ssET) of P. berghei microgametocytes to examine key structures during male gamete formation. Our data reveals an elaborate organisation of axonemes coiling around the nucleus in opposite directions forming a central axonemal band in microgametocytes. Furthermore, we discover the nucleus of microgametes to be tightly coiled around the axoneme in a complex structure whose formation starts before microgamete emergence during exflagellation. Our discoveries of the detailed 3D organisation of the flagellated microgamete and the haploid genome highlight some of the atypical mechanisms of axoneme assembly and haploid genome organisation during male gamete formation in the malaria parasite.


Asunto(s)
Anopheles , Plasmodium berghei , Masculino , Animales , Plasmodium berghei/genética , Haploidia , Células Germinativas , Anopheles/parasitología , Flagelos/genética , Mamíferos
14.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884813

RESUMEN

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Malaria/parasitología , Regulación de la Expresión Génica , Plasmodium falciparum/genética
15.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37880833

RESUMEN

Heart disease is the leading cause of death in humans and evidence suggests early life growth-restriction increases heart disease risk in adulthood. Therefore, this study sought to investigate the effects of low birth weight (LBW) and postnatal restricted nutrition (RN) on cardiac function in neonatal pigs. We hypothesized that LBW and RN would reduce cardiac function in pigs but this effect would be reversed with refeeding. To investigate this hypothesis, pigs born weighing <1.5 kg were assigned LBW, and pigs born >1.5 kg were assigned normal birth weight (NBW). Half the LBW and NBW pigs underwent ~25% total nutrient restriction via intermittent suckling (assigned RN) for the first 4 wk post-farrowing. The other half of piglets were allowed unrestricted suckling access to the sow (assigned NN). At 28 d of age (weaning), pigs were weaned and provided ad libitum access to a standard diet. Echocardiographic, vascular ultrasound, and blood pressure (BP) measurements were performed on day 28 and again on day 56 to assess cardiovascular structure and function. A full factorial three-way ANOVA (NN vs. RN, LBW vs. NBW, male vs. female) was performed. Key findings include reduced diastolic BP (P = 0.0401) and passive ventricular filling (P = 0.0062) in RN pigs at 28 d but this was reversed after refeeding. LBW piglets have reduced cardiac output index (P = 0.0037) and diastolic and systolic wall thickness (P = 0.0293 and P = 0.0472) at 56 d. Therefore, cardiac dysfunction from RN is recovered with adequate refeeding while LBW programs irreversible cardiac dysfunction despite proper refeeding in neonatal pigs.


Heart disease is the leading cause of death in humans, and in addition to the known modifiable risk factors, evidence suggests early life undernutrition increases heart disease risk in adulthood. Specifically, low birth weight (LBW) has been linked to poor infant cardiac development which could be made worse by an inadequate postnatal diet. Globally, 160 million children under the age of five experience a poor nutritive environment leading to growth-restriction highlighting the need for continued research. Using a pig model, the present investigation examined the effects of LBW and a restricted diet during postnatal life on cardiac structure and function in preweaning and post-weaning piglets. The most important findings were (1) nutrient-restricted piglets had reduced cardiac function at 28 d old but refeeding reversed cardiac dysfunction at 56 d, indicating that nutrient-induced cardiac dysfunction can be reversed, and (2) LBW pigs presented with cardiac dysfunction at 56 d regardless of feeding level, suggesting potential for an increased risk of heart disease in adulthood with LBW.


Asunto(s)
Cardiopatías , Enfermedades de los Porcinos , Porcinos , Animales , Femenino , Masculino , Humanos , Recién Nacido , Peso al Nacer/fisiología , Recién Nacido de Bajo Peso/fisiología , Cardiopatías/veterinaria
16.
J Sports Sci ; 41(11): 1093-1106, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37728081

RESUMEN

Race car drivers are often hypohydrated during a race. The FluidLogic drink system is a hands-free, prompted drinking system that is hypothesized to increase the likeliness of drivers' consuming fluids and thereby mitigating hypohydration. To test the hypothesis, 20 elite professional race car drivers participated in a 2-day cross-over study in which they drove on a race simulator in an environmental chamber that was heated to regulation cockpit temperature (38°C). Drivers used either the FluidLogic drink system or a standard in-car water bottle system (Control) on one of each testing day. The results indicated that there was consistent fluid consumption with the FluidLogic system, while the Control condition elicited fluid consumption in bolus doses. The Control condition was associated with moderate (0.5%) increased core body temperature (P < 0.05) and substantial (3.3%) increased urine-specific gravity (P < 0.001) as compared to the FluidLogic condition. Driving performance metrics indicated that lap times during the Control Condition were 5.1 ± 1.4 (4.1%) seconds slower (P < 0.05) than the FluidLogic Condition, due to driving errors that occurred in the high-speed corners. Based on these results, prompted hands-free drinking can mitigate hypohydration and performance loss in automobile racing drivers.


Asunto(s)
Conducción de Automóvil , Automóviles , Humanos , Estudios Cruzados , Calor
17.
Sports Med Health Sci ; 5(3): 205-212, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753423

RESUMEN

Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p â€‹= â€‹0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p â€‹= â€‹0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p â€‹= â€‹0.000 6), fractional shortening percentage (p â€‹< â€‹0.000 1), and ventricular mass at dissection (p â€‹< â€‹0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V˙ O2max.

18.
BMC Plant Biol ; 23(1): 387, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563571

RESUMEN

BACKGROUND: The family Lauraceae possesses ca. 50 genera and 2,500-3,000 species that are distributed in the pantropics. Only half of the genera of the family were represented in previously published plastome phylogenies because of the difficulty of obtaining research materials. Plastomes of Hypodaphnideae and the Mezilaurus group, two lineages with unusual phylogenetic positions, have not been previously reported and thus limit our full understanding on the plastome evolution of the family. Herbariomics, promoted by next generation sequencing technology, can make full use of herbarium specimens, and provides opportunities to fill the sampling gap. RESULTS: In this study, we sequenced five new plastomes (including four genera which are reported for the first time, viz. Chlorocardium, Hypodaphnis, Licaria and Sextonia) from herbarium specimens using genome skimming to conduct a comprehensive analysis of plastome evolution of Lauraceae as a means of sampling representatives of all major clades of the family. We identified and recognized six types of plastomes and revealed that at least two independent loss events at the IR-LSC boundary and an independent expansion of SSC occurred in the plastome evolution of the family. Hypodaphnis possesses the ancestral type of Lauraceae with trnI-CAU, rpl23 and rpl2 duplicated in the IR regions (Type-I). The Mezilaurus group shares the same plastome structure with the core Lauraceae group in the loss of trnI-CAU, rpl23 and rpl2 in the IRa region (Type-III). Two new types were identified in the Ocotea group: (1) the insertion of trnI-CAU between trnL-UAG and ccsA in the SSC region of Licaria capitata and Ocotea bracteosa (Type-IV), and (2) trnI-CAU and pseudogenizated rpl23 inserted in the same region of Nectandra angustifolia (Type-V). Our phylogeny suggests that Lauraceae are divided into nine major clades largely in accordance with the plastome types. The Hypodaphnideae are the earliest diverged lineage supported by both robust phylogeny and the ancestral plastome type. The monophyletic Mezilaurus group is sister to the core Lauraceae. CONCLUSIONS: By using herbariomics, we built a more complete picture of plastome evolution and phylogeny of the family, thus providing a convincing case for further use of herbariomics in phylogenetic studies of the Lauraceae.


Asunto(s)
Lauraceae , Lauraceae/genética , Filogenia , Secuencia de Bases , Evolución Molecular
19.
Med Sci Sports Exerc ; 55(12): 2160-2169, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486763

RESUMEN

INTRODUCTION: Growth restriction (GR) reduces ribosome abundance and skeletal muscle mass in mice. A reduction in skeletal muscle mass increases the risk of frailty and is associated with high morbidity and mortality rates. As eccentric type exercise increases muscle mass, this investigation aimed to determine if eccentric loading of skeletal muscle via downhill running (DHR) increased muscle mass in GR mice. METHODS: Mice were growth-restricted either gestational undernutrition (GUN, n = 8 litters), postnatal undernutrition (PUN, n = 8 litters), or were not restricted (CON, n = 8 litters) via a validated cross-fostering nutritive model. On postnatal day (PN) 21, all mice were weaned to a healthy diet, isolating the period of GR to early life as seen in humans. At PN45, mice were assigned to either a DHR (CON, n = 4 litters; GUN, n = 4 litters; PUN, n = 4 litters) or sedentary (SED: CON, n = 4 litters; GUN, n = 4 litters; PUN, n = 4 litters) group. Downhill running (16% decline: 18 m·min -1 ) was performed in 30-min bouts, three times per week, for 12 wk on a rodent treadmill. At PN129, the quadriceps femoris was dissected and evaluated for mass, myofiber size and type, and molecular markers of growth. RESULTS: Following training, CON-DHR mice having larger cells than CON-SED, GUN-SED, PUN-SED, and PUN-DHR mice ( P < 0.05). The PUN group (as compared with CON) had reduced body mass ( P < 0.001), upstream binding factor abundance ( P = 0.012), phosphor-mTOR ( P < 0.001), and quadriceps mass ( P = 0.02). The GUN and PUN groups had increased MuRF1 abundance ( P < 0.001) compared with CON ( P < 0.001). CONCLUSIONS: The blunted response to training suggests GR mice may have anabolic resistance when exposed to eccentric type exercise.


Asunto(s)
Desnutrición , Condicionamiento Físico Animal , Carrera , Humanos , Animales , Ratones , Músculo Cuádriceps , Carrera/fisiología , Músculo Esquelético/metabolismo , Desnutrición/complicaciones , Condicionamiento Físico Animal/fisiología
20.
Mol Neurobiol ; 60(10): 6133-6144, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37428404

RESUMEN

Proteasomal degradation of intrinsically disordered proteins, such as tau, is a critical component of proteostasis in both aging and neurodegenerative diseases. In this study, we investigated proteasomal activation by MK886 (MK). We previously identified MK as a lead compound capable of modulating tau oligomerization in a cellular FRET assay and rescuing P301L tau-induced cytotoxicity. We first confirmed robust proteasomal activation by MK using 20S proteasomal assays and a cellular proteasomal tau-GFP cleavage assay. We then show that MK treatment can significantly rescue tau-induced neurite pathology in differentiated SHSY5Y neurospheres. Due to this compelling result, we designed a series of seven MK analogs to determine if proteasomal activity is sensitive to structural permutations. Using the proteasome as the primary MOA, we examined tau aggregation, neurite outgrowth, inflammation, and autophagy assays to identify two essential substituents of MK that are required for compound activity: (1) removal of the N-chlorobenzyl group from MK negated both proteasomal and autophagic activity and reduced neurite outgrowth; and (2) removal of the indole-5-isopropyl group significantly improved neurite outgrowth and autophagy activity but reduced its anti-inflammatory capacity. Overall, our results suggest that the combination of proteasomal/autophagic stimulation and anti-inflammatory properties of MK and its derivatives can decrease tau-tau interactions and help rebalance dysfunctional proteostasis. Further development of MK to optimize its proteasomal, autophagic, and anti-inflammatory targets may lead to a novel therapeutic that would be beneficial in aging and neurodegenerative diseases.


Asunto(s)
Neuritas , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Neuritas/metabolismo , Citoplasma/metabolismo , Indoles , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA