Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34933920

RESUMEN

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Asunto(s)
Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Mutación con Ganancia de Función , Neuronas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Proteínas Amiloidogénicas/ultraestructura , Supervivencia Celular/genética , Expresión Génica , Lisosomas/metabolismo , Lisosomas/ultraestructura , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/ultraestructura , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Transducción de Señal
2.
Autophagy ; 15(9): 1572-1591, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30917721

RESUMEN

Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; EBSS: Earl's balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagosomas/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/ultraestructura , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Elife ; 82019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30775969

RESUMEN

Perturbations in mitochondrial function and homeostasis are pervasive in lysosomal storage diseases, but the underlying mechanisms remain unknown. Here, we report a transcriptional program that represses mitochondrial biogenesis and function in lysosomal storage diseases Niemann-Pick type C (NPC) and acid sphingomyelinase deficiency (ASM), in patient cells and mouse tissues. This mechanism is mediated by the transcription factors KLF2 and ETV1, which are both induced in NPC and ASM patient cells. Mitochondrial biogenesis and function defects in these cells are rescued by the silencing of KLF2 or ETV1. Increased ETV1 expression is regulated by KLF2, while the increase of KLF2 protein levels in NPC and ASM stems from impaired signaling downstream sphingosine-1-phosphate receptor 1 (S1PR1), which normally represses KLF2. In patient cells, S1PR1 is barely detectable at the plasma membrane and thus unable to repress KLF2. This manuscript provides a mechanistic pathway for the prevalent mitochondrial defects in lysosomal storage diseases. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Lípidos/genética , Enfermedades por Almacenamiento Lisosomal/genética , Biogénesis de Organelos , Transcripción Genética , Animales , Encéfalo/metabolismo , Respiración de la Célula , Regulación hacia Abajo/genética , Transporte de Electrón , Fibroblastos/metabolismo , Genes Mitocondriales , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Esfingomielina Fosfodiesterasa/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
4.
Orphanet J Rare Dis ; 13(1): 52, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631605

RESUMEN

BACKGROUND: Fabry disease is a multisystemic lysosomal storage disorder caused by the impairment of α-galactosidase A. The incidence of this rare disease is underestimated due to delayed diagnosis. Moreover, the management of the identified subjects is often complicated by the detection of variants of unclear diagnostic interpretation, usually identified in screening studies. We performed an observational study based on biochemical and genetic analysis of 805 dried blood spot samples from patients with clinical symptoms or family history of this pathology, which were collected from 109 Spanish hospitals, all over the country. RESULTS: We identified 77 new diagnosed patients with mutations related to classical Fabry disease, as well as 2 subjects with c.374A > T; p.His125Leu, a possible new mutation that need to be confirmed. Additionally, we detected 8 subjects carrying genetic variants possibly linked to late onset Fabry disease (p.Arg118Cys and p.Ala143Thr), 4 cases with polymorphism p.Asp313Tyr and 36 individuals with single nucleotide polymorphisms in intronic regions of GLA. Five of the identified mutations (c.431delG; c.1182delA; c.374A > T; c.932 T > C; c.125 T > A; c.778G > A), which were associated with a classical phenotype have not been previously described. Moreover 3 subjects presenting complex haplotypes made up by the association of intronic variants presented impaired levels of GLA transcripts and Gb3 deposits in skin biopsy. CONCLUSIONS: Enzymatic screening for Fabry Disease in risk population (2 or more clinical manifestations or family history of the disease) helped to identify undiagnosed patients and unravel the impairment of GLA expression in some subjects with complex haplotypes.


Asunto(s)
Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/epidemiología , alfa-Galactosidasa/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Enfermedad de Fabry/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Persona de Mediana Edad , España/epidemiología , Adulto Joven
5.
Biochem Biophys Res Commun ; 500(1): 87-93, 2018 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28456629

RESUMEN

Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Peroxisomas/metabolismo , Síndrome de Zellweger/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Regulación de la Expresión Génica , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/patología , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Peroxisomas/patología , Transducción de Señal , Transcripción Genética , Síndrome de Zellweger/genética , Síndrome de Zellweger/patología
6.
Sci Rep ; 7: 45076, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28345620

RESUMEN

Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases.


Asunto(s)
Transporte de Electrón , Lisosomas/metabolismo , Enfermedades Mitocondriales/metabolismo , Biogénesis de Organelos , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Quinasas/metabolismo , Rotenona/farmacología , Desacopladores/farmacología
7.
Int J Biochem Cell Biol ; 79: 345-349, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27613573

RESUMEN

Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology.


Asunto(s)
Lisosomas/metabolismo , Mitocondrias/metabolismo , Animales , Autofagia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA