Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633189

RESUMEN

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina , Células-Madre Neurales , Neurogénesis , Neuronas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Células-Madre Neurales/citología , Neuronas/citología , Neurogénesis/genética , Factor II del Crecimiento Similar a la Insulina/genética , Animales , Ratones , Ratones Endogámicos C57BL
2.
Cell Mol Life Sci ; 80(1): 36, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36627412

RESUMEN

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Neurogénesis , Factores de Transcripción SOXB1 , Animales , Ratones , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , División Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Expresión Génica , Neurogénesis/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
3.
Front Oncol ; 11: 630482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777782

RESUMEN

In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated. Genomic imprinting is an epigenetic marking process that causes genes to be expressed depending on their parental origin. The dysregulation of the imprinting pattern or the loss of genomic imprinting (LOI) have been described in different tumors including GBM, being one of the earliest and most common events that occurs in human cancers. Here we have gathered the current knowledge of the role of imprinted genes in normal NSCs function and how the imprinting process is altered in human GBM. We also review the changes at particular imprinted loci that might be involved in the development of the tumor. Understanding the mechanistic similarities in the regulation of genomic imprinting between normal NSCs and GBM cells will be helpful to identify molecular players that might be involved in the development of human GBM.

4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33712542

RESUMEN

Neurogenesis in the adult brain gives rise to functional neurons, which integrate into neuronal circuits and modulate neural plasticity. Sustained neurogenesis throughout life occurs in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and is hypothesized to be involved in behavioral/cognitive processes such as memory and in diseases. Genomic imprinting is of critical importance to brain development and normal behavior, and exemplifies how epigenetic states regulate genome function and gene dosage. While most genes are expressed from both alleles, imprinted genes are usually expressed from either the maternally or the paternally inherited chromosome. Here, we show that in contrast to its canonical imprinting in nonneurogenic regions, Delta-like homolog 1 (Dlk1) is expressed biallelically in the SGZ, and both parental alleles are required for stem cell behavior and normal adult neurogenesis in the hippocampus. To evaluate the effects of maternally, paternally, and biallelically inherited mutations within the Dlk1 gene in specific behavioral domains, we subjected Dlk1-mutant mice to a battery of tests that dissociate and evaluate the effects of Dlk1 dosage on spatial learning ability and on anxiety traits. Importantly, reduction in Dlk1 levels triggers specific cognitive abnormalities that affect aspects of discriminating differences in environmental stimuli, emphasizing the importance of selective absence of imprinting in this neurogenic niche.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cognición/fisiología , Dosificación de Gen , Neurogénesis/fisiología , Alelos , Animales , Proteínas de Unión al Calcio/fisiología , Hipocampo/metabolismo , Ratones
5.
Cell Stem Cell ; 28(2): 285-299.e9, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33207218

RESUMEN

Adult stem cells (SCs) transit between the cell cycle and a poorly defined quiescent state. Single neural SCs (NSCs) with quiescent, primed-for-activation, and activated cell transcriptomes have been obtained from the subependymal zone (SEZ), but the functional regulation of these states under homeostasis is not understood. Here, we develop a multilevel strategy to analyze these NSC states with the aim to uncover signals that regulate their level of quiescence/activation. We show that transitions between states occur in vivo and that activated and primed, but not quiescent, states can be captured and studied in culture. We also show that peripherally induced inflammation promotes a transient activation of primed NSCs (pNSCs) mediated by tumor necrosis factor α (TNF-α) acting through its receptor, TNF receptor 2 (TNFR2), and a return to quiescence in a TNF receptor 1 (TNFR1)-dependent manner. Our data identify a signaling pathway promoting NSC alertness and add to the emerging concept that SCs can respond to the systemic milieu.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Humanos , Inflamación , Ventrículos Laterales , Neurogénesis , Receptores del Factor de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Factor de Necrosis Tumoral alfa
6.
Nat Commun ; 10(1): 1726, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979904

RESUMEN

Ten-eleven-translocation (TET) proteins catalyze DNA hydroxylation, playing an important role in demethylation of DNA in mammals. Remarkably, although hydroxymethylation levels are high in the mouse brain, the potential role of TET proteins in adult neurogenesis is unknown. We show here that a non-catalytic action of TET3 is essentially required for the maintenance of the neural stem cell (NSC) pool in the adult subventricular zone (SVZ) niche by preventing premature differentiation of NSCs into non-neurogenic astrocytes. This occurs through direct binding of TET3 to the paternal transcribed allele of the imprinted gene Small nuclear ribonucleoprotein-associated polypeptide N (Snrpn), contributing to transcriptional repression of the gene. The study also identifies BMP2 as an effector of the astrocytic terminal differentiation mediated by SNRPN. Our work describes a novel mechanism of control of an imprinted gene in the regulation of adult neurogenesis through an unconventional role of TET3.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/citología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Nucleares snRNP/metabolismo , Animales , Astrocitos/citología , Encéfalo/metabolismo , Catálisis , Dioxigenasas , Ventrículos Laterales/metabolismo , Ratones , ARN Interferente Pequeño/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 116(20): 10103-10112, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31010925

RESUMEN

Physical exercise has positive effects on cognition, but very little is known about the inheritance of these effects to sedentary offspring and the mechanisms involved. Here, we use a patrilineal design in mice to test the transmission of effects from the same father (before or after training) and from different fathers to compare sedentary- and runner-father progenies. Behavioral, stereological, and whole-genome sequence analyses reveal that paternal cognition improvement is inherited by the offspring, along with increased adult neurogenesis, greater mitochondrial citrate synthase activity, and modulation of the adult hippocampal gene expression profile. These results demonstrate the inheritance of exercise-induced cognition enhancement through the germline, pointing to paternal physical activity as a direct factor driving offspring's brain physiology and cognitive behavior.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Padre/psicología , Herencia Paterna , Carrera/fisiología , Animales , Femenino , Expresión Génica , Masculino , Ratones , Embarazo
8.
Elife ; 82019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30777838

RESUMEN

A long non-coding RNA called lnc-NR2F1 regulates several neuronal genes, including some involved in autism and intellectual disabilities.


Asunto(s)
Neuronas/metabolismo , Proteínas/genética , ARN Largo no Codificante/genética , Animales , Trastorno Autístico/genética , Factor de Transcripción COUP I/genética , Humanos , Discapacidad Intelectual/genética
9.
Genome Res ; 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367313

RESUMEN

Approximately half the mammalian genome is composed of repetitive sequences, and accumulating evidence suggests that some may have an impact on genome function. Here, we characterized a large array class of repeats of long-interspersed elements (LINE-1). Although widely distributed in mammals, locations of such arrays are species specific. Using targeted deletion, we asked whether a 170-kb LINE-1 array located at a mouse imprinted domain might function as a modulator of local transcriptional control. The LINE-1 array is lamina associated in differentiated ES cells consistent with its AT-richness, and although imprinting occurs both proximally and distally to the array, active LINE-1 transcripts within the tract are biallelically expressed. Upon deletion of the array, no perturbation of imprinting was observed, and abnormal phenotypes were not detected in maternal or paternal heterozygous or homozygous mutant mice. The array does not shield nonimprinted genes in the vicinity from local imprinting control. Reduced neural expression of protein-coding genes observed upon paternal transmission of the deletion is likely due to the removal of a brain-specific enhancer embedded within the LINE array. Our findings suggest that presence of a 170-kb LINE-1 array reflects the tolerance of the site for repeat insertion rather than an important genomic function in normal development.

10.
Stem Cells ; 35(12): 2403-2416, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833887

RESUMEN

Insulin is one of the standard components used to culture primary neurospheres. Although it stimulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not survival or self-renewal, of adult NSCs. This effect is mediated by insulin receptor substrate 2 (IRS2) and subsequent activation of the protein kinase B (or Akt), leading to increased activity of the G1-phase cyclin-dependent kinase 4 (Cdk4) and cell cycle progression. Neurospheres isolated from Irs2-deficient mice are reduced in size and fail to expand in culture and this impaired proliferation is rescued by introduction of a constitutively active Cdk4 (Cdk4R24C/R24C ). More interestingly, activation of the IRS2/Akt/Cdk4 signaling pathway by insulin is also necessary for the generation in vitro of neurons and oligodendrocytes from NSCs. Furthermore, the IRS2/Cdk4 pathway is also required for neuritogenesis, an aspect of neuronal maturation that has not been previously linked to regulation of the cell cycle. Differentiation of NSCs usually follows exit from the cell cycle due to increased levels of CDK-inhibitors which prevent activation of CDKs. In contrast, our data indicate that IRS2-mediated Cdk4 activity in response to a mitogen such as insulin promotes terminal differentiation of adult NSCs. Stem Cells 2017;35:2403-2416.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Insulina/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos
11.
Brain Plast ; 3(1): 89-98, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29765862

RESUMEN

Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as "imprinted genes" that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. Recent studies on the postnatal neurogenic niches raise many intriguing questions concerning the role of genomic imprinting and gene dosage during postnatal neurogenesis, including how imprinted genes operate in concert with signalling cues to contribute to newborn neurons' formation during adulthood. Here we have gathered the current knowledge on the imprinting process in the neurogenic niches. We also review the phenotypes associated with genetic mutations at particular imprinted loci in order to consider the impact of imprinted genes in the maintenance and/or differentiation of the neural stem cell pool in vivo and during brain tumour formation.

12.
Differentiation ; 91(4-5): 28-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27016251

RESUMEN

Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche.


Asunto(s)
Técnicas de Cultivo de Célula , Epéndimo/crecimiento & desarrollo , Células-Madre Neurales/citología , Neurogénesis/genética , Células Madre Adultas , Animales , Diferenciación Celular/genética , Epéndimo/citología , Humanos , Ratones , Neuronas
13.
World J Stem Cells ; 7(4): 700-10, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26029342

RESUMEN

In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.

14.
Methods Mol Biol ; 1212: 103-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25063500

RESUMEN

Stem cells are capable of extensive self-renewal while preserving the ability to generate cell progeny that can differentiate into different cell types. Here, we describe some methods for the isolation of neural stem cells (NSCs) from the adult murine subependymal zone (SEZ), their extensive culturing and the assessment of their full developmental potential, particularly with respect to their differentiation capacity. The procedure includes chemically defined conditions such as absence of serum and addition of specific growth factors, in which differentiated cells die and are rapidly eliminated from the culture. In contrast, undifferentiated precursors become hypertrophic and proliferate, forming clonal spherical clusters called "neurospheres." Experimental manipulation of NSCs identifies populations of cells with differential restriction in their self-renewal potential and introduces a great interest in defining the conditions that guide their differentiation into a variety of neuronal and glial subtypes, aspects that have important implications for their use in future clinical purposes.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Células-Madre Neurales/citología , Cultivo Primario de Células/métodos , Animales , Ratones
15.
Stem Cells ; 33(1): 219-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25185890

RESUMEN

Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(45): 16088-93, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349437

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance and obesity, as well as progressive liver dysfunction. Recent animal studies have underscored the importance of hepatic growth hormone (GH) signaling in the development of NAFLD. The imprinted Delta-like homolog 1 (Dlk1)/preadipocyte factor 1 (Pref1) gene encodes a complex protein producing both circulating and membrane-tethered isoforms whose expression dosage is functionally important because even modest elevation during embryogenesis causes lethality. DLK1 is up-regulated during embryogenesis, during suckling, and in the mother during pregnancy. We investigated the normal role for elevated DLK1 dosage by overexpressing Dlk1 from endogenous control elements. This increased DLK1 dosage caused improved glucose tolerance with no primary defect in adipose tissue expansion even under extreme metabolic stress. Rather, Dlk1 overexpression caused reduced fat stores, pituitary insulin-like growth factor 1 (IGF1) resistance, and a defect in feedback regulation of GH. Increased circulatory GH culminated in a switch in whole body fuel metabolism and a reduction in hepatic steatosis. We propose that the function of DLK1 is to shift the metabolic mode of the organism toward peripheral lipid oxidation and away from lipid storage, thus mediating important physiological adaptations associated with early life and with implications for metabolic disease resistance.


Asunto(s)
Desarrollo Embrionario , Hígado Graso/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metabolismo de los Lípidos , Animales , Proteínas de Unión al Calcio , Hígado Graso/genética , Hígado Graso/patología , Hígado Graso/prevención & control , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Embarazo
17.
Neuron ; 83(3): 572-85, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25043422

RESUMEN

Interactions of adult neural stem cells (NSCs) with supportive vasculature appear critical for their maintenance and function, although the molecular details are still under investigation. Neurotrophin (NT)-3 belongs to the NT family of trophic factors, best known for their effects in promoting neuronal survival. Here we show that NT-3 produced and secreted by endothelial cells of brain and choroid plexus capillaries is required for the quiescence and long-term maintenance of NSCs in the mouse subependymal niche. Uptake of NT-3 from irrigating vasculature and cerebrospinal fluid (CSF) induces the rapid phosphorylation of endothelial nitric oxide (NO) synthase present in the NSCs, leading to the production of NO, which subsequently acts as a cytostatic factor. Our results identify a novel interaction between stem cells and vasculature/CSF compartments that is mediated by an unprecedented role of a neurotrophin and indicate that stem cells can regulate their own quiescence in response to endothelium-secreted molecules.


Asunto(s)
Células Endoteliales/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Neurotrofina 3/metabolismo , Óxido Nítrico/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Ratones , Óxido Nítrico/líquido cefalorraquídeo , Óxido Nítrico Sintasa de Tipo III/metabolismo
18.
Nature ; 504(7479): 277-281, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336287

RESUMEN

Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal ß-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.


Asunto(s)
Linaje de la Célula , Fibroblastos/citología , Piel/citología , Piel/crecimiento & desarrollo , Cicatrización de Heridas/fisiología , Adipocitos/citología , Adipocitos/metabolismo , Animales , Dermis/anatomía & histología , Dermis/citología , Dermis/embriología , Dermis/crecimiento & desarrollo , Femenino , Fibroblastos/trasplante , Folículo Piloso/citología , Folículo Piloso/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Músculo Liso/citología , Músculo Liso/metabolismo , Piel/anatomía & histología , Piel/embriología , beta Catenina/metabolismo
19.
Nat Neurosci ; 16(11): 1567-75, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097040

RESUMEN

Relative quiescence and self renewal are defining features of adult stem cells, but their potential coordination remains unclear. Subependymal neural stem cells (NSCs) lacking cyclin-dependent kinase (CDK) inhibitor (CKI) 1a (p21) exhibit rapid expansion that is followed by their permanent loss later in life. Here we demonstrate that transcription of the gene encoding bone morphogenetic protein 2 (Bmp2) in NSCs is under the direct negative control of p21 through actions that are independent of CDK. Loss of p21 in NSCs results in increased levels of secreted BMP2, which induce premature terminal differentiation of multipotent NSCs into mature non-neurogenic astrocytes in an autocrine and/or paracrine manner. We also show that the cell-nonautonomous p21-null phenotype is modulated by the Noggin-rich environment of the subependymal niche. The dual function that we describe here provides a physiological example of combined cell-autonomous and cell-nonautonomous functions of p21 with implications in self renewal, linking the relative quiescence of adult stem cells to their longevity and potentiality.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica/genética , Células-Madre Neurales/fisiología , Factores de Edad , Animales , Bromodesoxiuridina , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Diferenciación Celular/genética , Línea Celular Transformada , Medios de Cultivo Condicionados/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Antígeno Ki-67/metabolismo , Ratones , Ratones Noqueados , Mutagénesis , Células Madre Neoplásicas , Proteínas del Tejido Nervioso/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transducción Genética , Transfección
20.
Arch Biochem Biophys ; 534(1-2): 11-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23073070

RESUMEN

Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial subtypes. Here we review current knowledge regarding the paracrine regulation provided by the components of the niche and its function, focusing on the main germinal region of the adult central nervous system (CNS), the subependymal zone (SEZ).


Asunto(s)
Movimiento Celular , Epéndimo/fisiología , Células-Madre Neurales/fisiología , Comunicación Paracrina , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Proliferación Celular , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiología , Epéndimo/metabolismo , Humanos , Neovascularización Fisiológica , Células-Madre Neurales/metabolismo , Neurogénesis , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Nicho de Células Madre , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA