Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 103: 268-274, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28499944

RESUMEN

Plasma deposition, liquid flame spray (LFS) and atomic layer deposition (ALD) were used to form inorganic coatings in new exopolysaccharide (FucoPol) biodegradable films. Coated films were characterised in terms of surface, optical and barrier properties in order to evaluate their potential use in food packaging. FucoPol films presented dense and homogeneous surface with instant water contact angle of 95̊. Plasma deposition of perfluorohexane (PFH) on FucoPol surface has not shown significant improvement in the hydrophobic behaviour over the time. The FucoPol coating of SiO2 nanoparticles deposited by LFS and plasma deposition of PFH have shown higher instant water contact angle (135°) caused by coating surface roughness, but this hydrophobic behaviour was not stable over time. FucoPol films coated only with TiO2 deposited by ALD and combination of that with plasma deposition of PFH have shown stable water contact angle during time (90̊ and 115̊, respectively), transparency in the same order of magnitude and significantly lower permeability to water vapour (3.45×10-11mol/m s Pa and 3.45×10-11mol/m s Pa when compared to uncoated films with 5.32×10-11mol/m s Pa). Moreover, films coated with TiO2-PFH have also shown a permeability to oxygen of 1.70×10-16molm/m2sPa which is 67% lower than uncoated films.


Asunto(s)
Polisacáridos/química , Interacciones Hidrofóbicas e Hidrofílicas , Oxígeno/química , Permeabilidad , Gases em Plasma/química , Vapor , Temperatura , Titanio/química
2.
Carbohydr Polym ; 147: 8-15, 2016 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-27178903

RESUMEN

Bilayer films of FucoPol and chitosan were prepared and characterized in terms of optical, morphologic, hygroscopic, mechanical and barrier properties, to evaluate their potential application in food packaging. Bilayer films have shown dense and homogeneous layers, and presented enhanced properties when comparing to monolayer FucoPol films. Though, a high swelling degree in contact with liquid water (263.3%) and a high water vapour permeability (0.75×10(-11)mol/msPa), typical of polysaccharide films, was still observed. However, they presented a low permeability to O2 and CO2 (0.47×10(-16)molm/m(2)sPa and 5.8×10(-16)molm/m(2)sPa, respectively). Tensile tests revealed a flexible and resistant film with an elongation at break of 38% and an elastic modulus of 137MPa. The studied properties, in particular the excellent barrier to gases, impart these bilayer films potential to be used in packaging of low moisture content products, as well as in multilayered hydrophobic/hydrophilic/hydrophobic barriers for food products with a broader range of water content.


Asunto(s)
Quitosano/química , Embalaje de Alimentos/normas , Permeabilidad , Polisacáridos/química , Resistencia a la Tracción , Agua/química
3.
Membranes (Basel) ; 6(2)2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27089372

RESUMEN

Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

4.
Int J Biol Macromol ; 79: 611-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26014143

RESUMEN

In this work, the solution properties of the bacterial fucose-rich polysaccharide, FucoPol, were studied. The effect of pH (3.5-10.0) and ionic strength (0.02-1.0 M NaCl) on the intrinsic viscosity and steady shear flow were evaluated using a central composite rotatable design of experiments and surface response methodology. FucoPol's intrinsic and apparent viscosities presented a quite low variation under a wide range of pH (3.5-8.0) and ionic strength (0.05-0.50 M NaCl) values. FucoPol produced viscous solutions with shear-thinning behavior at different polymer concentrations (0.2-1.2 wt.%). Flow curves were successfully described by the Cross model. The viscosity of the first Newtonian plateau varied from 0.01 to 2.47 Pas for polymer concentrations from 0.2 to 1.2 wt.%, and the dependence of the estimated relaxation time with polymer concentration suggests a large degree of interaction between FucoPol molecules. Given the results obtained, FucoPol is proposed as thickening agent for applications in which stability of the apparent viscosity under pH and ionic strength variations is required.


Asunto(s)
Aditivos Alimentarios/química , Polisacáridos Bacterianos/química , Elasticidad , Concentración de Iones de Hidrógeno , Concentración Osmolar , Reología , Soluciones , Viscosidad
5.
Int J Biol Macromol ; 71: 81-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24751508

RESUMEN

Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications.


Asunto(s)
Enterobacter/metabolismo , Glicerol/metabolismo , Nitrógeno/metabolismo , Polisacáridos Bacterianos/biosíntesis , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Medios de Cultivo/química , Fermentación
6.
Int J Biol Macromol ; 71: 111-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24769364

RESUMEN

FucoPol, an exopolysaccharide produced by Enterobacter A47, grown in bioreactor with glycerol as carbon source, was used with citric acid to obtain biodegradable films by casting. The films were characterized in terms of optical, hygroscopic, mechanical and barrier properties. These films have shown to be transparent, but with a brown tone, imparting small colour changes when applied over coloured surfaces. They were hydrophilic, with high permeability to water vapour (1.01×10(-11)mol/msPa), but presented good barrier properties to oxygen and carbon dioxide (0.7×10(-16)molm/m(2)sPa and 42.7×10(-16)molm/m(2)sPa, respectively). Furthermore, films have shown mechanical properties under tensile tests characteristic of ductile films with high elongation at break, low tension at break and low elastic modulus. Although the obtained results are promising, films properties can be improved, namely by testing alternative plasticizers, crosslinking agents and blends with other biopolymers. Taking into account the observed ductile mechanical properties, good barrier properties to gases when low water content is used and their hydrophilic character, it is foreseen a good potential for FucoPol films to be incorporated as inner layer of a multilayer packaging material.


Asunto(s)
Biopolímeros/química , Polisacáridos Bacterianos/química , Adsorción , Enterobacter/metabolismo , Fermentación , Embalaje de Alimentos , Fenómenos Mecánicos , Permeabilidad , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA