Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 310: 103988, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36423821

RESUMEN

Centipedic Acid (CPA), a natural diterpene from Egletes viscosa, an endemic species of the Caatinga biome, has shown antioxidant and anti-inflammatory properties. However, no report on the CPA on respiratory system mechanics has been so far advanced. We aimed to investigate the dose-response behavior of CPA on E. coli lipopolysaccharide (LPS)-triggered acute lung injury (ALI). Forty-eight C57BL/6 mice were randomly divided into six groups: control (SS), induced to ALI (LPS), 4 groups induced to ALI pre-treated with 12.5, 25, 50 and 100 mg/kg of CPA (CPA12.5, CPA25, CPA50 and CPA100 groups). CPA 100 mg/kg could prevent inflammatory cell infiltration, alveolar collapse, changes in tissue micromechanics and lung function (airway resistance, tissue elastance, tissue resistance and Static compliance). These results indicate preventive potential of this compound in the installation of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Modelos Animales de Enfermedad , Escherichia coli , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón
2.
J Appl Physiol (1985) ; 132(6): 1536-1545, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35446598

RESUMEN

Aerobic exercise is an increasing trend worldwide. However, people are increasingly exercising outdoors, alongside roadways where heavy vehicles release diesel exhaust. We analyzed respiratory effects caused by inhaled diesel particulate emitted by vehicles adhering to Brazilian legislation, PROCONVE Phase P7 (equivalent to EURO 5), as well the effects of exposure during moderate-intensity aerobic exercise. Male C57BL/6 mice were divided into four groups for a 4-wk treadmill protocol: CE (n = 8) received intranasal sterile physiological saline and then performed moderate-intensity exercise (control), CS (n = 10) received saline and then remained stationary on the treadmill (control), DS (n = 9) received intranasal diesel exhaust particles and then remained stationary, and DE (n = 10) was exposed to diesel exhaust and then exercised at moderate intensity. Mice were subsequently connected to a mechanical ventilator (SCIREQ flexiVent, Canada) to analyze the following respiratory mechanics parameters: tissue resistance, elastance, inspiratory capacity, static compliance, Newtonian resistance, and pressure-volume loop area. After euthanasia, peripheral pulmonary tissue strips were extracted and subjected to force-length tests to evaluate parenchymal elastic and mechanical properties, using oscillations applied by a computer-controlled force transducer system; parameters obtained were tissue resistance, elastance, and hysteresivity. DS displayed impaired respiratory mechanics for all parameters, in comparison with CS. DE exhibited significantly reduced inspiratory capacity and static compliance, and increased Newtonian resistance when compared with CE. Exposure to diesel exhaust, both during exercise and rest, still exerts harmful pulmonary effects, even at current legislation limits. These results justify further changes in environmental standards, to reduce the health risks caused by traffic-related pollution.NEW & NOTEWORTHY Exercise, while beneficial, is often performed in areas of greater inhaled particulates. Here we show this effect using mice exposed to controlled diesel particle inhalation and moderate aerobic exercise. Diesel particle inhalation, without or with exercise, worsened both respiratory mechanical properties associated with changes in lung tissue mechanics and morphometry.


Asunto(s)
Pulmón , Emisiones de Vehículos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Función Respiratoria , Emisiones de Vehículos/toxicidad
3.
Rev Bras Farmacogn ; 31(2): 232-238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967357

RESUMEN

The acute respiratory distress syndrome caused by viral pathogens is a worldwide public health emergency. It is suggested that patients with this condition should be screened using therapies that address the need to prevent mortality. Anacardic acids found in Anacardium species have biological activities related to the antioxidant capacity of their double bonds in the lateral alkyl chain. The present study seeks to investigate the effects of anacardic acid monoene on acute respiratory distress syndrome caused by lipopolysaccharides. Experiments were carried out on mice divided into three groups: control group, acute respiratory distress-induced group, and anacardic acid monoene pretreated group, subsequently, induced to acute respiratory distress by lipopolysaccharides. Results showed that anacardic acid moeno was able to prevent changes in lung function and preserve its mechanical properties from containing inflammatory cell infiltrate, collapse of alveoli, and decreased airway resistance, suggesting that this compound may be effective in preventing the acute respiratory distress syndrome caused by viral pathogens. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-021-00151-8.

4.
Environ Toxicol Pharmacol ; 83: 103583, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33434645

RESUMEN

Air pollution has association with chronic obstructive pulmonary disease (COPD) and reduced life expectancy. This study investigated the deleterious effects caused by tobacco smoke and diesel exhaust particles (DEP) from vehicles operating under EURO 3 and EURO 5 standards. Experiments were carried out on C57BL/6 mice divided into six groups: control group, group exposed to cigarette smoke (CS), two groups exposed to DEP (AAE3 and AAE5), and two groups exposed to tobacco smoke and vehicle DEP (CSE3 and CSE5). Results showed that, when compared to AA, groups AAE3 and AAE5 showed changes in respiratory mechanics, and that DEP originating from EURO 5 diesel vehicles was less harmful when compared to DEP originating from EURO 3 diesel vehicles. Analyses of groups CSE3 and CSE5 revealed increased inspiratory capacity and decreased tissue elastance, when compared to their respective controls, suggesting an exacerbation of changes in respiratory system mechanics compatible with COPD development.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Humo/efectos adversos , Emisiones de Vehículos/toxicidad , Animales , Enfisema/patología , Enfisema/fisiopatología , Pulmón/patología , Pulmón/fisiología , Masculino , Ratones Endogámicos C57BL , Vehículos a Motor , Nicotiana , Productos de Tabaco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA