Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int J Cardiol ; 415: 132415, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39127146

RESUMEN

BACKGROUND: The role of ECG in ruling out myocardial complications on cardiac magnetic resonance (CMR) is unclear. We examined the clinical utility of ECG in screening for cardiac abnormalities on CMR among post-hospitalised COVID-19 patients. METHODS: Post-hospitalised patients (n = 212) and age, sex and comorbidity-matched controls (n = 38) underwent CMR and 12­lead ECG in a prospective multicenter follow-up study. Participants were screened for routinely reported ECG abnormalities, including arrhythmia, conduction and R wave abnormalities and ST-T changes (excluding repolarisation intervals). Quantitative repolarisation analyses included corrected QT (QTc), corrected QT dispersion (QTc disp), corrected JT (JTc) and corrected T peak-end (cTPe) intervals. RESULTS: At a median of 5.6 months, patients had a higher burden of ECG abnormalities (72.2% vs controls 42.1%, p = 0.001) and lower LVEF but a comparable cumulative burden of CMR abnormalities than controls. Patients with CMR abnormalities had more ECG abnormalities and longer repolarisation intervals than those with normal CMR and controls (82% vs 69% vs 42%, p < 0.001). Routinely reported ECG abnormalities had poor discriminative ability (area-under-the-receiver-operating curve: AUROC) for abnormal CMR, AUROC 0.56 (95% CI 0.47-0.65), p = 0.185; worse among female than male patients. Adding JTc and QTc disp improved the AUROC to 0.64 (95% CI 0.55-0.74), p = 0.002, the sensitivity of the ECG increased from 81.6% to 98.0%, negative predictive value from 84.7% to 96.3%, negative likelihood ratio from 0.60 to 0.13, and reduced sex-dependence variabilities of ECG diagnostic parameters. CONCLUSION: Post-hospitalised COVID-19 patients have more ECG abnormalities than controls. Normal ECGs, including normal repolarisation intervals, reliably exclude CMR abnormalities in male and female patients.


Asunto(s)
COVID-19 , Electrocardiografía , Imagen por Resonancia Cinemagnética , Humanos , COVID-19/diagnóstico por imagen , COVID-19/diagnóstico , Masculino , Femenino , Electrocardiografía/métodos , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Imagen por Resonancia Cinemagnética/métodos , Estudios de Seguimiento , Adulto
2.
Artículo en Inglés | MEDLINE | ID: mdl-39207330

RESUMEN

BACKGROUND: Hospitalized COVID-19 patients with troponin elevation have a higher prevalence of cardiac abnormalities than control individuals. However, the progression and impact of myocardial injury on COVID-19 survivors remain unclear. OBJECTIVES: This study sought to evaluate myocardial injury in COVID-19 survivors with troponin elevation with baseline and follow-up imaging and to assess medium-term outcomes. METHODS: This was a prospective, longitudinal cohort study in 25 United Kingdom centers (June 2020 to March 2021). Hospitalized COVID-19 patients with myocardial injury underwent cardiac magnetic resonance (CMR) scans within 28 days and 6 months postdischarge. Outcomes were tracked for 12 months, with quality of life surveys (EuroQol-5 Dimension and 36-Item Short Form surveys) taken at discharge and 6 months. RESULTS: Of 342 participants (median age: 61.3 years; 71.1% male) with baseline CMR, 338 had a 12-month follow-up, 235 had a 6-month CMR, and 215 has baseline and follow-up quality of life surveys. Of 338 participants, within 12 months, 1.2% died; 1.8% had new myocardial infarction, acute coronary syndrome, or coronary revascularization; 0.8% had new myopericarditis; and 3.3% had other cardiovascular events requiring hospitalization. At 6 months, there was a minor improvement in left ventricular ejection fraction (1.8% ± 1.0%; P < 0.001), stable right ventricular ejection fraction (0.4% ± 0.8%; P = 0.50), no change in myocardial scar pattern or volume (P = 0.26), and no imaging evidence of continued myocardial inflammation. All pericardial effusions (26 of 26) resolved, and most pneumonitis resolved (95 of 101). EuroQol-5 Dimension scores indicated an overall improvement in quality of life (P < 0.001). CONCLUSIONS: Myocardial injury in severe hospitalized COVID-19 survivors is nonprogressive. Medium-term outcomes show a low incidence of major adverse cardiovascular events and improved quality of life. (COVID-19 Effects on the Heart; ISRCTN58667920).

3.
J Cardiovasc Magn Reson ; 26(2): 101055, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971501

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly utilized to evaluate expanding cardiovascular conditions. The Society for Cardiovascular Magnetic Resonance (SCMR) Registry is a central repository for real-world clinical data to support cardiovascular research, including those relating to outcomes, quality improvement, and machine learning. The SCMR Registry is built on a regulatory-compliant, cloud-based infrastructure that houses searchable content and Digital Imaging and Communications in Medicine images. The goal of this study is to summarize the status of the SCMR Registry at 150,000 exams. METHODS: The processes for data security, data submission, and research access are outlined. We interrogated the Registry and presented a summary of its contents. RESULTS: Data were compiled from 154,458 CMR scans across 20 United States sites, containing 299,622,066 total images (∼100 terabytes of storage). Across reported values, the human subjects had an average age of 58 years (range 1 month to >90 years old), were 44% (63,070/145,275) female, 72% (69,766/98,008) Caucasian, and had a mortality rate of 8% (9,962/132,979). The most common indication was cardiomyopathy (35,369/131,581, 27%), and most frequently used current procedural terminology code was 75561 (57,195/162,901, 35%). Macrocyclic gadolinium-based contrast agents represented 89% (83,089/93,884) of contrast utilization after 2015. Short-axis cines were performed in 99% (76,859/77,871) of tagged scans, short-axis late gadolinium enhancement (LGE) in 66% (51,591/77,871), and stress perfusion sequences in 30% (23,241/77,871). Mortality data demonstrated increased mortality in patients with left ventricular ejection fraction <35%, the presence of wall motion abnormalities, stress perfusion defects, and infarct LGE, compared to those without these markers. There were 456,678 patient-years of all-cause mortality follow-up, with a median follow-up time of 3.6 years. CONCLUSION: The vision of the SCMR Registry is to promote evidence-based utilization of CMR through a collaborative effort by providing a web mechanism for centers to securely upload de-identified data and images for research, education, and quality control. The Registry quantifies changing practice over time and supports large-scale real-world multicenter observational studies of prognostic utility.

4.
JACC Cardiovasc Imaging ; 17(9): 1044-1058, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970595

RESUMEN

BACKGROUND: In suspected non-ST-segment elevation myocardial infarction (NSTEMI), this presumed diagnosis may not hold true in all cases, particularly in patients with nonobstructive coronary arteries (NOCA). Additionally, in multivessel coronary artery disease, the presumed infarct-related artery may be incorrect. OBJECTIVES: This study sought to assess the diagnostic utility of cardiac magnetic resonance (CMR) before invasive coronary angiogram (ICA) in suspected NSTEMI. METHODS: A total of 100 consecutive stable patients with suspected acute NSTEMI (70% male, age 62 ± 11 years) prospectively underwent CMR pre-ICA to assess cardiac function (cine), edema (T2-weighted imaging, T1 mapping), and necrosis/scar (late gadolinium enhancement). CMR images were interpreted blinded to ICA findings. The clinical care and ICA teams were blinded to CMR findings until post-ICA. RESULTS: Early CMR (median 33 hours postadmission and 4 hours pre-ICA) confirmed only 52% (52 of 100) of patients had subendocardial infarction, 15% transmural infarction, 18% nonischemic pathologies (myocarditis, takotsubo, and other forms of cardiomyopathies), and 11% normal CMR; 4% were nondiagnostic. Subanalyses according to ICA findings showed that, in patients with obstructive coronary artery disease (73 of 100), CMR confirmed only 84% (61 of 73) had MI, 10% (7 of 73) nonischemic pathologies, and 5% (4 of 73) normal. In patients with NOCA (27 of 100), CMR found MI in only 22% (6 of 27 true MI with NOCA), and reclassified the presumed diagnosis of NSTEMI in 67% (18 of 27: 11 nonischemic pathologies, 7 normal). In patients with CMR-MI and obstructive coronary artery disease (61 of 100), CMR identified a different infarct-related artery in 11% (7 of 61). CONCLUSIONS: In patients presenting with suspected NSTEMI, a CMR-first strategy identified MI in 67%, nonischemic pathologies in 18%, and normal findings in 11%. Accordingly, CMR has the potential to affect at least 50% of all patients by reclassifying their diagnosis or altering their potential management.


Asunto(s)
Angiografía Coronaria , Imagen por Resonancia Cinemagnética , Infarto del Miocardio sin Elevación del ST , Valor Predictivo de las Pruebas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Infarto del Miocardio sin Elevación del ST/diagnóstico por imagen , Anciano , Estudios Prospectivos , Factores de Tiempo , Reproducibilidad de los Resultados , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Medios de Contraste/administración & dosificación , Edema Cardíaco/diagnóstico por imagen , Edema Cardíaco/fisiopatología
5.
Lancet Microbe ; 5(7): 655-668, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703782

RESUMEN

BACKGROUND: A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS: Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS: Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION: Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING: Wellcome Trust and Department for Health and Social Care.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , Adulto , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Masculino , Adulto Joven , Reino Unido/epidemiología , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Adolescente , Voluntarios Sanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Vacunación/métodos
7.
Arq Bras Cardiol ; 121(1): e20230537, 2024.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-38511808

RESUMEN

This case report describes the exercise program on a hospitalized 54-year-old male patient with cardiogenic shock waiting for a heart transplant assisted by an intra-aortic balloon pump, a temporary mechanical circulatory support device. The temporary mechanical circulatory support device, an intra-aortic balloon pump, was placed in the left subclavian artery, enabling the exercise protocol. Measurements and values from Swan-Ganz catheter, blood sample, brain natriuretic peptide (NT-proBNP), and high-sensitivity C-reactive protein (hs-CRP), as well as the six-minute walk test (6MWT) and venous oxygen saturation (SvO2) were obtained before and after an exercise protocol. The exercise training protocol involved the use of an unloaded bed cycle ergometer once a day, for a maximum of 30 minutes, to the tolerance limit. No adverse events or events related to the dislocation of the intra-aortic balloon pump were observed during the exercise protocol. The exercise program resulted in higher SvO2 levels, with an increased 6MWT with lower Borg dyspnea scores (312 meters vs. 488 meters and five points vs. three points, respectively). After completing the ten-day exercise protocol, the patient underwent a non-complicated heart transplant surgery and a full recovery in the ICU. This study showed that exercise is a feasible option for patients with cardiogenic shock who are using an intra-aortic balloon pump and that it is well-tolerated with no reported adverse events.


O presente relato de caso descreve o programa de exercícios aplicado a um paciente do sexo masculino, de 54 anos, internado com choque cardiogênico, aguardando transplante cardíaco e assistido por balão intra-aórtico, um dispositivo de suporte circulatório mecânico temporário. O dispositivo de suporte circulatório mecânico temporário, um balão intra-aórtico, foi colocado na artéria subclávia esquerda, possibilitando o protocolo de exercícios. Antes e após um protocolo de exercícios, foram obtidos dados a partir de cateter de Swan-Ganz, amostra de sangue, peptídeo natriurético cerebral (NT-proBNP), proteína C reativa de alta sensibilidade (PCR-as), teste de caminhada de seis minutos (TC6min) e medição da saturação venosa de oxigênio (SvO2). O protocolo de treinamento físico envolveu a utilização de um cicloergômetro adaptado ao leito, sem carga, uma vez ao dia, por no máximo 30 minutos, até o limite da tolerância. Não foram observados eventos adversos tampouco relacionados ao deslocamento do balão intra-aórtico durante o protocolo de exercícios. O programa de exercícios resultou em maior SvO2 com aumento do TC6min e menores escores de dispneia de Borg (312 metros vs. 488 metros e cinco pontos vs. três pontos, respectivamente). Após completar o protocolo de exercícios de dez dias, o paciente foi submetido a uma cirurgia de transplante cardíaco sem complicações e recuperação total na UTI. O presente estudo demonstrou que o exercício é uma opção viável para pacientes com choque cardiogênico em uso de balão intra-aórtico e que é bem tolerado, além de não haver relatos de eventos adversos.


Asunto(s)
Trasplante de Corazón , Corazón Auxiliar , Masculino , Humanos , Persona de Mediana Edad , Choque Cardiogénico/terapia , Choque Cardiogénico/etiología , Trasplante de Corazón/efectos adversos , Caminata , Contrapulsador Intraaórtico/efectos adversos , Contrapulsador Intraaórtico/métodos , Corazón Auxiliar/efectos adversos , Resultado del Tratamiento
8.
Eur Heart J Cardiovasc Imaging ; 25(3): 339-346, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37788638

RESUMEN

AIMS: Cardiovascular magnetic resonance parametric mapping enables non-invasive quantitative myocardial tissue characterization. Human myocardium has normal ranges of T1 and T2 values, deviation from which may indicate disease or change in physiology. Normal myocardial T1 and T2 values are affected by biological sex. Consequently, normal ranges created with insufficient numbers of each sex may result in sampling biases, misclassification of healthy values vs. disease, and even misdiagnoses. In this study, we investigated the impact of using male normal ranges for classifying female cases as normal or abnormal (and vice versa). METHODS AND RESULTS: One hundred and forty-two healthy volunteers (male and female) were scanned on two Siemens 3T MR systems, providing averaged global myocardial T1 and T2 values on a per-subject basis. The Monte Carlo method was used to generate simulated normal ranges from these values to estimate the statistical accuracy of classifying healthy female or male cases correctly as 'normal' when using sex-specific vs. mixed-sex normal ranges. The normal male and female T1- and T2-mapping values were significantly different by sex, after adjusting for age and heart rate. CONCLUSION: Using 15 healthy volunteers who are not sex specific to establish a normal range resulted in a typical misclassification of up to 36% of healthy females and 37% of healthy males as having abnormal T1 values and up to 16% of healthy females and 12% of healthy males as having abnormal T2 values. This paper highlights the potential adverse impact on diagnostic accuracy that can occur when local normal ranges contain insufficient numbers of both sexes. Sex-specific reference ranges should thus be routinely adopted in clinical practice.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Valores de Referencia , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Corazón/fisiología , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Cinemagnética/métodos
9.
Front Cardiovasc Med ; 10: 1213290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753166

RESUMEN

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for non-invasive myocardial tissue characterisation. However, accurate segmentation of the left ventricular (LV) myocardium remains a challenge due to limited training data and lack of quality control. This study addresses these issues by leveraging generative adversarial networks (GAN)-generated virtual native enhancement (VNE) images to expand the training set and incorporating an automated quality control-driven (QCD) framework to improve segmentation reliability. Methods: A dataset comprising 4,716 LGE images (from 1,363 patients with hypertrophic cardiomyopathy and myocardial infarction) was used for development. To generate additional clinically validated data, LGE data were augmented with a GAN-based generator to produce VNE images. LV was contoured on these images manually by clinical observers. To create diverse candidate segmentations, the QCD framework involved multiple U-Nets, which were combined using statistical rank filters. The framework predicted the Dice Similarity Coefficient (DSC) for each candidate segmentation, with the highest predicted DSC indicating the most accurate and reliable result. The performance of the QCD ensemble framework was evaluated on both LGE and VNE test datasets (309 LGE/VNE images from 103 patients), assessing segmentation accuracy (DSC) and quality prediction (mean absolute error (MAE) and binary classification accuracy). Results: The QCD framework effectively and rapidly segmented the LV myocardium (<1 s per image) on both LGE and VNE images, demonstrating robust performance on both test datasets with similar mean DSC (LGE: 0.845±0.075; VNE: 0.845±0.071; p=ns). Incorporating GAN-generated VNE data into the training process consistently led to enhanced performance for both individual models and the overall framework. The quality control mechanism yielded a high performance (MAE=0.043, accuracy=0.951) emphasising the accuracy of the quality control-driven strategy in predicting segmentation quality in clinical settings. Overall, no statistical difference (p=ns) was found when comparing the LGE and VNE test sets across all experiments. Conclusions: The QCD ensemble framework, leveraging GAN-generated VNE data and an automated quality control mechanism, significantly improved the accuracy and reliability of LGE segmentation, paving the way for enhanced and accountable diagnostic imaging in routine clinical use.

10.
Echocardiography ; 40(10): 1122-1126, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563622

RESUMEN

Arrhythmogenic-cardiomyopathy (ACM) is an inherited heart disease with right, left, or biventricular (BVACM) involvement based on EKG, imaging, family history, and genetic testing. We present a 64-year-old woman with prior myocarditis and diagnosis of BVACM 29 years later. We propose myocarditis as a promoter of gene expression of plakophilin-2 mutation.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Miocarditis , Femenino , Humanos , Persona de Mediana Edad , Miocarditis/complicaciones , Miocarditis/diagnóstico por imagen , Miocarditis/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico por imagen , Displasia Ventricular Derecha Arritmogénica/genética , Mutación
12.
J Cardiovasc Magn Reson ; 25(1): 38, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394485

RESUMEN

INTRODUCTION: The use of cardiovascular magnetic resonance (CMR) for diagnosis and management of a broad range of cardiac and vascular conditions has quickly expanded worldwide. It is essential to understand how CMR is utilized in different regions around the world and the potential practice differences between high-volume and low-volume centers. METHODS: CMR practitioners and developers from around the world were electronically surveyed by the Society for Cardiovascular Magnetic Resonance (SCMR) twice, requesting data from 2017. Both surveys were carefully merged, and the data were curated professionally by a data expert using cross-references in key questions and the specific media access control IP address. According to the United Nations classification, responses were analyzed by region and country and interpreted in the context of practice volumes and demography. RESULTS: From 70 countries and regions, 1092 individual responses were included. CMR was performed more often in academic (695/1014, 69%) and hospital settings (522/606, 86%), with adult cardiologists being the primary referring providers (680/818, 83%). Evaluation of cardiomyopathy was the top indication in high-volume and low-volume centers (p = 0.06). High-volume centers were significantly more likely to list evaluation of ischemic heart disease (e.g., stress CMR) as a primary indicator compared to low-volume centers (p < 0.001), while viability assessment was more commonly listed as a primary referral reason in low-volume centers (p = 0.001). Both developed and developing countries noted cost and competing technologies as top barriers to CMR growth. Access to scanners was listed as the most common barrier in developed countries (30% of responders), while lack of training (22% of responders) was the most common barrier in developing countries. CONCLUSION: This is the most extensive global assessment of CMR practice to date and provides insights from different regions worldwide. We identified CMR as heavily hospital-based, with referral volumes driven primarily by adult cardiology. Indications for CMR utilization varied by center volume. Efforts to improve the adoption and utilization of CMR should include growth beyond the traditional academic, hospital-based location and an emphasis on cardiomyopathy and viability assessment in community centers.


Asunto(s)
Cardiología , Cardiomiopatías , Adulto , Humanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Cardiología/educación , Espectroscopía de Resonancia Magnética
14.
JACC Cardiovasc Imaging ; 16(9): 1149-1159, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37204381

RESUMEN

BACKGROUND: Up to 25% of embolic strokes occur in individuals without atrial fibrillation (AF) or other identifiable mechanisms. OBJECTIVES: This study aims to assess whether left atrial (LA) blood flow characteristics are associated with embolic brain infarcts, independently of AF. METHODS: The authors recruited 134 patients: 44 with a history of ischemic stroke and 90 with no history of stroke but CHA2DS2VASc score ≥1. Cardiac magnetic resonance (CMR) evaluated cardiac function and LA 4-dimensional flow parameters, including velocity and vorticity (a measure of rotational flow), and brain magnetic resonance imaging (MRI) was performed to detect large noncortical or cortical infarcts (LNCCIs) (likely embolic), or nonembolic lacunar infarcts. RESULTS: Patients (41% female; age 70 ± 9 years) had moderate stroke risk (median CHA2DS2VASc = 3, Q1-Q3: 2-4). Sixty-eight (51%) had diagnosed AF, of whom 58 (43%) were in AF during CMR. Thirty-nine (29%) had ≥1 LNCCI, 20 (15%) had ≥1 lacunar infarct without LNCCI, and 75 (56%) had no infarct. Lower LA vorticity was significantly associated with prevalent LNCCIs after adjustment for AF during CMR, history of AF, CHA2DS2VASc score, LA emptying fraction, LA indexed maximum volume, left ventricular ejection fraction, and indexed left ventricular mass (OR: 2.06 [95% CI: 1.08-3.92 per SD]; P = 0.027). By contrast, LA flow peak velocity was not significantly associated with LNCCIs (P = 0.21). No LA parameter was associated with lacunar infarcts (all P > 0.05). CONCLUSIONS: Reduced LA flow vorticity is significantly and independently associated with embolic brain infarcts. Imaging LA flow characteristics may aid identification of individuals who would benefit from anticoagulation for embolic stroke prevention, regardless of heart rhythm.


Asunto(s)
Circulación Sanguínea , Infarto Encefálico , Accidente Cerebrovascular Embólico , Atrios Cardíacos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibrilación Atrial/epidemiología , Circulación Sanguínea/fisiología , Infarto Encefálico/epidemiología , Accidente Cerebrovascular Embólico/epidemiología , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Factores de Riesgo
15.
J Cardiovasc Magn Reson ; 25(1): 21, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973744

RESUMEN

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has affected nearly 600 million people to date across the world. While COVID-19 is primarily a respiratory illness, cardiac injury is also known to occur. Cardiovascular magnetic resonance (CMR) imaging is uniquely capable of characterizing myocardial tissue properties in-vivo, enabling insights into the pattern and degree of cardiac injury. The reported prevalence of myocardial involvement identified by CMR in the context of COVID-19 infection among previously hospitalized patients ranges from 26 to 60%. Variations in the reported prevalence of myocardial involvement may result from differing patient populations (e.g. differences in severity of illness) and the varying intervals between acute infection and CMR evaluation. Standardized methodologies in image acquisition, analysis, interpretation, and reporting of CMR abnormalities across would likely improve concordance between studies. This consensus document by the Society for Cardiovascular Magnetic Resonance (SCMR) provides recommendations on CMR imaging and reporting metrics towards the goal of improved standardization and uniform data acquisition and analytic approaches when performing CMR in patients with COVID-19 infection.


Asunto(s)
COVID-19 , Cardiopatías , Imagen por Resonancia Magnética , Humanos , COVID-19/complicaciones , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Espectroscopía de Resonancia Magnética , Miocarditis/diagnóstico por imagen , Valor Predictivo de las Pruebas , Cardiopatías/diagnóstico por imagen , Cardiopatías/etiología
16.
Front Cardiovasc Med ; 10: 1097974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873410

RESUMEN

Background: Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time. Methods: We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1-7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months. Results: The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p < 0.001). All COVID-19 patients who returned for follow up (n = 12) at 6 months had normal biventricular function, T1 and T2SI. Conclusion: Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings.

17.
Circ Cardiovasc Imaging ; 16(1): e014068, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649450

RESUMEN

Myocardial inflammation occurs following activation of the cardiac immune system, producing characteristic changes in the myocardial tissue. Cardiovascular magnetic resonance is the non-invasive imaging gold standard for myocardial tissue characterization, and is able to detect image signal changes that may occur resulting from inflammation, including edema, hyperemia, capillary leak, necrosis, and fibrosis. Conventional cardiovascular magnetic resonance for the detection of myocardial inflammation and its sequela include T2-weighted imaging, parametric T1- and T2-mapping, and gadolinium-based contrast-enhanced imaging. Emerging techniques seek to image several parameters simultaneously for myocardial tissue characterization, and to depict subtle immune-mediated changes, such as immune cell activity in the myocardium and cardiac cell metabolism. This review article outlines the underlying principles of current and emerging cardiovascular magnetic resonance methods for imaging myocardial inflammation.


Asunto(s)
Medios de Contraste , Miocarditis , Humanos , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Miocarditis/diagnóstico por imagen , Miocarditis/patología , Inflamación , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas
18.
Circulation ; 147(5): 364-374, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36705028

RESUMEN

BACKGROUND: Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS: Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS: Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS: Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: 58667920.


Asunto(s)
COVID-19 , Lesiones Cardíacas , Miocarditis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cicatriz , COVID-19/complicaciones , COVID-19/epidemiología , Hospitalización , Estudios Prospectivos , Factores de Riesgo , Troponina , Anciano
19.
JACC Cardiovasc Imaging ; 16(1): 46-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599569

RESUMEN

BACKGROUND: Acute ST-segment elevation myocardial infarction (STEMI) has effects on the myocardium beyond the immediate infarcted territory. However, pathophysiologic changes in the noninfarcted myocardium and their prognostic implications remain unclear. OBJECTIVES: The purpose of this study was to evaluate the long-term prognostic value of acute changes in both infarcted and noninfarcted myocardium post-STEMI. METHODS: Patients with acute STEMI undergoing primary percutaneous coronary intervention underwent evaluation with blood biomarkers and cardiac magnetic resonance (CMR) at 2 days and 6 months, with long-term follow-up for major adverse cardiac events (MACE). A comprehensive CMR protocol included cine, T2-weighted, T2∗, T1-mapping, and late gadolinium enhancement (LGE) imaging. Areas without LGE were defined as noninfarcted myocardium. MACE was a composite of cardiac death, sustained ventricular arrhythmia, and new-onset heart failure. RESULTS: Twenty-two of 219 patients (10%) experienced an MACE at a median of 4 years (IQR: 2.5-6.0 years); 152 patients returned for the 6-month visit. High T1 (>1250 ms) in the noninfarcted myocardium was associated with lower left ventricular ejection fraction (LVEF) (51% ± 8% vs 55% ± 9%; P = 0.002) and higher NT-pro-BNP levels (290 pg/L [IQR: 103-523 pg/L] vs 170 pg/L [IQR: 61-312 pg/L]; P = 0.008) at 6 months and a 2.5-fold (IQR: 1.03-6.20) increased risk of MACE (2.53 [IQR: 1.03-6.22]), compared with patients with normal T1 in the noninfarcted myocardium (P = 0.042). A lower T1 (<1,300 ms) in the infarcted myocardium was associated with increased MACE (3.11 [IQR: 1.19-8.13]; P = 0.020). Both noninfarct and infarct T1 were independent predictors of MACE (both P = 0.001) and significantly improved risk prediction beyond LVEF, infarct size, and microvascular obstruction (C-statistic: 0.67 ± 0.07 vs 0.76 ± 0.06, net-reclassification index: 40% [IQR: 12%-64%]; P = 0.007). CONCLUSIONS: The acute responses post-STEMI in both infarcted and noninfarcted myocardium are independent incremental predictors of long-term MACE. These insights may provide new opportunities for treatment and risk stratification in STEMI.


Asunto(s)
Infarto de la Pared Anterior del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/terapia , Infarto del Miocardio con Elevación del ST/complicaciones , Volumen Sistólico , Función Ventricular Izquierda , Imagen por Resonancia Cinemagnética/métodos , Medios de Contraste , Valor Predictivo de las Pruebas , Gadolinio , Miocardio/patología , Pronóstico , Infarto de la Pared Anterior del Miocardio/complicaciones , Intervención Coronaria Percutánea/efectos adversos
20.
JACC Cardiovasc Imaging ; 16(4): 450-460, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36648036

RESUMEN

BACKGROUND: Cardiac magnetic resonance native T1-mapping provides noninvasive, quantitative, and contrast-free myocardial characterization. However, its predictive value in population cohorts has not been studied. OBJECTIVES: The associations of native T1 with incident events were evaluated in 42,308 UK Biobank participants over 3.17 ± 1.53 years of prospective follow-up. METHODS: Native T1-mapping was performed in 1 midventricular short-axis slice using the Shortened Modified Look-Locker Inversion recovery technique (WIP780B) in 1.5-T scanners (Siemens Healthcare). Global myocardial T1 was calculated using an automated tool. Associations of T1 with: 1) prevalent risk factors (eg, diabetes, hypertension, and high cholesterol); 2) prevalent and incident diseases (eg, any cardiovascular disease [CVD], any brain disease, valvular heart disease, heart failure, nonischemic cardiomyopathies, cardiac arrhythmias, atrial fibrillation [AF], myocardial infarction, ischemic heart disease [IHD], and stroke); and 3) mortality (eg, all-cause, CVD, and IHD) were examined. Results are reported as odds ratios (ORs) or HRs per SD increment of T1 value with 95% CIs and corrected P values, from logistic and Cox proportional hazards regression models. RESULTS: Higher myocardial T1 was associated with greater odds of a range of prevalent conditions (eg, any CVD, brain disease, heart failure, nonischemic cardiomyopathies, AF, stroke, and diabetes). The strongest relationships were with heart failure (OR: 1.41 [95% CI: 1.26-1.57]; P = 1.60 × 10-9) and nonischemic cardiomyopathies (OR: 1.40 [95% CI: 1.16-1.66]; P = 2.42 × 10-4). Native T1 was positively associated with incident AF (HR: 1.25 [95% CI: 1.10-1.43]; P = 9.19 × 10-4), incident heart failure (HR: 1.47 [95% CI: 1.31-1.65]; P = 4.79 × 10-11), all-cause mortality (HR: 1.24 [95% CI: 1.12-1.36]; P = 1.51 × 10-5), CVD mortality (HR: 1.40 [95% CI: 1.14-1.73]; P = 0.0014), and IHD mortality (HR: 1.36 [95% CI: 1.03-1.80]; P = 0.0310). CONCLUSIONS: This large population study demonstrates the utility of myocardial native T1-mapping for disease discrimination and outcome prediction.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Insuficiencia Cardíaca , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Bancos de Muestras Biológicas , Valor Predictivo de las Pruebas , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA