Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399315

RESUMEN

Type 2 diabetes mellitus (DM) continues to escalate, necessitating innovative therapeutic approaches that target distinct pathways and address DM complications. Flavonoids have been shown to possess several pharmacological activities that are important for DM. This study aimed to evaluate the in vivo effects of the flavonoid melanoxetin using Goto-Kakizaki rats. Over a period of 14 days, melanoxetin was administered subcutaneously to investigate its antioxidant, anti-inflammatory, and antidiabetic properties. The results show that melanoxetin reduced insulin resistance in adipose tissue by targeting protein tyrosine phosphatase 1B. Additionally, melanoxetin counteracted oxidative stress by reducing nitrotyrosine levels and modulating superoxide dismutase 1 and hemeoxygenase in adipose tissue and decreasing methylglyoxal-derived hydroimidazolone (MG-H1), a key advanced glycation end product (AGE) implicated in DM-related complications. Moreover, the glyoxalase 1 expression decreased in both the liver and the heart, correlating with reduced AGE levels, particularly MG-H1 in the heart. Melanoxetin also demonstrated anti-inflammatory effects by reducing serum prostaglandin E2 levels, and increasing the antioxidant status of the aorta wall through enhanced acetylcholine-dependent relaxation in the presence of ascorbic acid. These findings provide valuable insights into melanoxetin's therapeutic potential in targeting multiple pathways involved in type 2 DM, particularly in mitigating oxidative stress and glycation.

2.
Cardiovasc Toxicol ; 24(2): 122-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38165500

RESUMEN

Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Humanos , Ratas , Animales , Masculino , Catalasa/metabolismo , Leucina/farmacología , Leucina/metabolismo , Leucina/uso terapéutico , Ratas Wistar , Doxorrubicina/farmacología , Estrés Oxidativo , Suplementos Dietéticos
3.
Life Sci ; 321: 121597, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948389

RESUMEN

AIM: Lactation is an important programming window for metabolic disease and neuronal alterations later in life. We aimed to study the effect of maternal glycation during lactation on offspring neurodevelopment and behaviour, assessing possible sex differences and underpinning molecular players. METHODS: Female Wistar rats were treated with Glyoxalase-1 inhibitor S-p-Bromobenzylguthione cyclopentyl diester (BBGC 5 mg/kg). A control and vehicle group treated with dimethyl sulfoxide were also considered. Male and female offspring were tested at infancy for neurodevelopment hallmarks. After weaning, triglycerides and total antioxidant capacity were measured in breast milk. At adolescence, offspring were tested for locomotor ability, anxious-like behaviour, and recognition memory. Metabolic parameters were assessed, and the hippocampus and prefrontal cortex were collected for molecular analysis. KEY FINDINGS: Maternal glycation reduced triglycerides and total antioxidant capacity levels in breast milk. At infancy, both male and female offspring presented an anticipation on the achievement of neurodevelopmental milestones. At adolescence, male offspring exposed to maternal glycation presented hyperlocomotion, whereas offspring of both sexes presented a risk-taking phenotype, accompanied by increase GABAA receptor levels in the hippocampus. Females also demonstrated GABAA and PSD-95 changes in prefrontal cortex. Furthermore, lower levels of GLO1 and consequently higher accumulation of AGES were also observed in both male and female offspring hippocampus. SIGNIFICANCE: Early exposure to maternal glycation induces changes in milk composition leading to neurodevelopment changes at infancy, and sex-specific behavioural and neurometabolic changes at adolescence, further evidencing that lactation period is a critical metabolic programming window and in sculpting behaviour.


Asunto(s)
Antioxidantes , Efectos Tardíos de la Exposición Prenatal , Ratas , Animales , Femenino , Masculino , Humanos , Ratas Wistar , Antioxidantes/farmacología , Reacción de Maillard , Leche/metabolismo , Lactancia , Triglicéridos , Efectos Tardíos de la Exposición Prenatal/metabolismo
4.
J Dev Orig Health Dis ; 13(5): 617-625, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35057878

RESUMEN

This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.


Asunto(s)
Estrés Oxidativo , Piruvaldehído , Animales , Femenino , Fibrosis , Inflamación/inducido químicamente , Piruvaldehído/toxicidad , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA