Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39386429

RESUMEN

CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules. Based on in silico predictions, we devised a strategy of triplet base-pair repeat repair arms that correspond to microhomologies at double-strand breaks (trimologies), which facilitated integration of large cargo (>2 kb) and protected the targeted locus and transgene from excessive damage. Successful integrations occurred in >30 loci in human cells and in in vivo models. Germline transmissible transgene integration in Xenopus, and endogenous tagging of tubulin in adult mice brains demonstrated integration during early embryonic cleavage and in non-dividing differentiated cells. Further, optimal repair arms for single- or double nucleotide edits were predictable, and facilitated small edits in vitro and in vivo using oligonucleotide templates. We provide a design-tool (Pythia, pythia-editing.org) to optimize custom integration, tagging or editing strategies. Pythia will facilitate genomic integration and editing for experimental and therapeutic purposes for a wider range of target cell types and applications.

2.
Neural Regen Res ; 19(11): 2365-2376, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526273

RESUMEN

The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.

3.
Genes (Basel) ; 15(3)2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540444

RESUMEN

Epithelial cells comprising the choroid plexus (CP) form a crucial barrier between the blood and the cerebrospinal fluid, thereby assuming a central position in brain homeostasis and signaling. Mounting evidence suggests that the impairment of CP function may be a significant contributor to Alzheimer's disease (AD) pathogenesis. CP function relies on the expression of specific receptors, and the potential involvement of olfactory receptors (ORs) and taste receptors (TASRs) in chemical surveillance within the CP is being investigated. Previous studies have implicated ORs and TASRs in neurodegenerative disorders like AD, although the direct evidence of their expression in the human CP remains to be established. In this study, we conducted a transcriptomic analysis encompassing eleven ORs and TASRs in the CP, comparing samples from healthy age-matched controls to those from patients with AD spanning Braak stages I to VI. Among these receptors, a striking finding emerged-OR2K2 exhibited robust expression, with a statistically significant upregulation noted at Braak stage I. Surprisingly, at the protein level, OR2K2 showed a significant decrease in both Braak stage I and VI. Additionally, we identified CP epithelial cells as the source of OR2K2 expression, where it colocalized with autophagy markers LC3 and p62. We postulate that OR2K2 could be subjected to degradation by autophagy in the early stages of AD, triggering a compensatory mechanism that leads to increased OR2K2 mRNA transcription. This study uncovers a potential role for OR2K2 in AD pathogenesis, offering a novel perspective on the intricate dynamics at play in this neurodegenerative disorder.


Asunto(s)
Enfermedad de Alzheimer , Receptores Odorantes , Humanos , Enfermedad de Alzheimer/patología , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Expresión Génica , Encéfalo/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
4.
Cell Mol Life Sci ; 80(8): 196, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405535

RESUMEN

Modulation of brain olfactory (OR) and taste receptor (TASR) expression was recently reported in neurological diseases. However, there is still limited evidence of these genes' expression in the human brain and the transcriptional regulation mechanisms involved remain elusive. We explored the possible expression and regulation of selected OR and TASR in the human orbitofrontal cortex (OFC) of sporadic Alzheimer's disease (AD) and non-demented control specimens using quantitative real-time RT-PCR and ELISA. Global H3K9me3 amounts were measured on OFC total histone extracts, and H3K9me3 binding at each chemoreceptor locus was examined through native chromatin immunoprecipitation. To investigate the potential interactome of the repressive histone mark H3K9me3 in OFC specimens, native nuclear complex co-immunoprecipitation (Co-IP) was combined with reverse phase-liquid chromatography coupled to mass spectrometry analysis. Interaction between H3K9me3 and MeCP2 was validated by reciprocal Co-IP, and global MeCP2 levels were quantitated. We found that OR and TAS2R genes are expressed and markedly downregulated in OFC at early stages of sporadic AD, preceding the progressive reduction in their protein levels and the appearance of AD-associated neuropathology. The expression pattern did not follow disease progression suggesting transcriptional regulation through epigenetic mechanisms. We discovered an increase of OFC global H3K9me3 levels and a substantial enrichment of this repressive signature at ORs and TAS2Rs proximal promoter at early stages of AD, ultimately lost at advanced stages. We revealed the interaction between H3K9me3 and MeCP2 at early stages and found that MeCP2 protein is increased in sporadic AD. Findings suggest MeCP2 might be implicated in OR and TAS2R transcriptional regulation through interaction with H3K9me3, and as an early event, it may uncover a novel etiopathogenetic mechanism of sporadic AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Expresión Génica , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Corteza Prefrontal/metabolismo
5.
Acta Neuropathol Commun ; 11(1): 55, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004084

RESUMEN

The circadian clock is synchronized to the 24 h day by environmental light which is transmitted from the retina to the suprachiasmatic nucleus (SCN) primarily via the retinohypothalamic tract (RHT). Circadian rhythm abnormalities have been reported in neurodegenerative disorders such as Alzheimer's disease (AD). Whether these AD-related changes are a result of the altered clock gene expression, retina degeneration, including the dysfunction in RHT transmission, loss of retinal ganglion cells and its electrophysiological capabilities, or a combination of all of these pathological mechanisms, is not known. Here, we evaluated transgenic APP/PS1 mouse model of AD and wild-type mice at 6- and 12-month-old, as early and late pathological stage, respectively. We noticed the alteration of circadian clock gene expression not only in the hypothalamus but also in two extra-hypothalamic brain regions, cerebral cortex and hippocampus, in APP/PS1 mice. These alterations were observed in 6-month-old transgenic mice and were exacerbated at 12 months of age. This could be explained by the reduced RHT projections in the SCN of APP/PS1 mice, correlating with downregulation of hypothalamic GABAergic response in APP/PS1 mice in advanced stage of pathology. Importantly, we also report retinal degeneration in APP/PS1 mice, including Aß deposits and reduced choline acetyltransferase levels, loss of melanopsin retinal ganglion cells and functional integrity mainly of inner retina layers. Our findings support the theory that retinal degeneration constitutes an early pathological event that directly affects the control of circadian rhythm in AD.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Retiniana , Ratones , Animales , Enfermedad de Alzheimer/patología , Degeneración Retiniana/patología , Retina/patología , Ratones Transgénicos , Ritmo Circadiano , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
6.
Cereb Cortex ; 30(6): 3781-3799, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32043120

RESUMEN

Neural cell adhesion molecule 2 (NCAM2) is involved in the development and plasticity of the olfactory system. Genetic data have implicated the NCAM2 gene in neurodevelopmental disorders including Down syndrome and autism, although its role in cortical development is unknown. Here, we show that while overexpression of NCAM2 in hippocampal neurons leads to minor alterations, its downregulation severely compromises dendritic architecture, leading to an aberrant phenotype including shorter dendritic trees, retraction of dendrites, and emergence of numerous somatic neurites. Further, our data reveal alterations in the axonal tree and deficits in neuronal polarization. In vivo studies confirm the phenotype and reveal an unexpected role for NCAM2 in cortical migration. Proteomic and cell biology experiments show that NCAM2 molecules exert their functions through a protein complex with the cytoskeletal-associated proteins MAP2 and 14-3-3γ and ζ. We provide evidence that NCAM2 depletion results in destabilization of the microtubular network and reduced MAP2 signal. Our results demonstrate a role for NCAM2 in dendritic formation and maintenance, and in neural polarization and migration, through interaction of NCAM2 with microtubule-associated proteins.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Plasticidad Neuronal/genética , Animales , Movimiento Celular/genética , Polaridad Celular/genética , Células HEK293 , Hipocampo , Humanos , Ratones , Microtúbulos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas
7.
Genet Med ; 21(9): 2043-2058, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30842647

RESUMEN

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Asunto(s)
Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Mutación , Linaje , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma , Vía de Señalización Wnt
8.
Cell Transplant ; 27(3): 423-437, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29873251

RESUMEN

Neurogenesis in the adult hippocampus is a unique process in neurobiology that requires functional integration of newly generated neurons, which may disrupt existing hippocampal network connections and consequently loss of established memories. As neurodegenerative diseases characterized by abnormal neurogenesis and memory dysfunctions are increasing, the identification of new anti-aging drugs is required. In adult mice, we found that melatonin, a well-established neurogenic hormone, and the melatonin analog 2-(2-(5-methoxy-1 H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) were able to induce hippocampal neurogenesis, measured by neuronal nuclei (NeuN) and 5-bromo-2'-deoxyuridine (BrdU) labeling. More importantly, only IQM316 administration was able to induce hippocampal neurogenesis while preserving previously acquired memories, assessed with object recognition tests. In vitro studies with embryonic neural stem cells replicated the finding that both melatonin and IQM316 induce direct differentiation of neural precursors without altering their proliferative activity. Furthermore, IQM316 induces differentiation through a mechanism that is not dependent of melatonergic receptors (MTRs), since the MTR antagonist luzindole could not block the IQM316-induced effects. We also found that IQM316 and melatonin modulate mitochondrial DNA copy number and oxidative phosphorylation proteins, while maintaining mitochondrial function as measured by respiratory assays and enzymatic activity. These results uncover a novel pharmacological agent that may be capable of inducing adult hippocampal neurogenesis at a healthy and sustainable rate that preserves recognition memories.


Asunto(s)
Hipocampo/efectos de los fármacos , Melatonina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Triptaminas/farmacología
9.
Mol Neurobiol ; 55(1): 145-155, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866799

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder (ND), characterized by the loss of dopaminergic neurons, microglial activation, and neuroinflammation. Current available treatments in clinical practice cannot halt the progression of the disease. During the last few years, growth factors (GFs) have been raised as a promising therapeutic approach to address the underlying neurodegenerative process. Among others, glial cell-derived neurotrophic factor (GDNF) is a widely studied GF for PD. However, its clinical use is limited due to its short half life, rapid degradation rate, and difficulties in crossing the blood-brain barrier (BBB). Lately, intranasal administration has appeared as an alternative non-invasive way to bypass the BBB and target drugs directly to the central nervous system (CNS). Thus, the aim of this work was to develop a novel nanoformulation to enhance brain targeting in PD through nasal administration. For that purpose, GDNF was encapsulated into chitosan (CS)-coated nanostructured lipid carriers, with the surface modified with transactivator of transcription (TAT) peptide (CS-nanostructured lipid carrier (NLC)-TAT-GDNF). After the physiochemical characterization of nanoparticles, the in vivo study was performed by intranasal administration to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The CS-NLC-TAT-GDNF-treated group revealed motor recovery which was confirmed with immunohistochemistry studies, showing the highest number of tyrosine hydroxylase (TH+) fibers in the striatum and TH+ neuron levels in the substantia nigra. Moreover, ionizing calcium-binding adaptor molecule 1 immunohistochemistry was performed, revealing that CS-NLC-TAT-GDNF acts as a modulator on microglia activation, obtaining values similar to control. Therefore, it may be concluded that the intranasal administration of CS-NLC-TAT-GDNF may represent a promising therapy for PD treatment.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Productos del Gen tat/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Nanopartículas/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Administración Intranasal , Animales , Lípidos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/patología
10.
J Neurosci ; 35(14): 5504-21, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855168

RESUMEN

In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity.


Asunto(s)
Proteína C-Reactiva/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Proteína C-Reactiva/genética , Células Cultivadas , Corteza Cerebral/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Regulación de la Expresión Génica/genética , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Vigilia/efectos de los fármacos
11.
PLoS One ; 9(6): e98998, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905332

RESUMEN

In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5'-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Neurilemoma/patología , Uridina Trifosfato/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Receptores Purinérgicos P2Y/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
Ann Neurol ; 74(5): 655-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23794434

RESUMEN

OBJECTIVE: To identify a novel biochemical marker that precedes clinical symptoms in Alzheimer disease (AD). METHODS: Using quantitative polymerase chain reaction techniques, we measured circulating cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) from study participants, selected from a cohort of 282 subjects, who were classified according to their concentrations of amyloid ß1-42, total tau, and phosphorylated tau and by the presence or absence of dementia, into asymptomatic subjects at risk of AD, symptomatic patients diagnosed with sporadic AD, presymptomatic subjects carrying pathogenic PSEN1 mutations, and patients diagnosed with frontotemporal lobar degeneration (FTLD). We performed equivalent studies in a separate validation cohort of sporadic AD and FTLD patients. In addition, we measured mtDNA copy number in cultured cortical neurons from mutant amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice. RESULTS: Asymptomatic patients at risk of AD and symptomatic AD patients, but not FTLD patients, exhibit a significant decrease in circulating cell-free mtDNA in the CSF. These observations were confirmed in the validation cohort. In addition, presymptomatic subjects carrying pathogenic PSEN1 gene mutations show low mtDNA content in CSF before the appearance of AD-related biomarkers in CSF. Moreover, mtDNA content in CSF discriminates with high sensitivity and specificity AD patients from either controls or patients with FTLD. Furthermore, cultured cortical neurons from APP/PS1 transgenic mice have fewer mtDNA copies before the appearance of altered synaptic markers. INTERPRETATION: Low content of mtDNA in CSF may be a novel biomarker for the early detection of preclinical AD. These findings support the hypothesis that mtDNA depletion is a characteristic pathophysiological factor of neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , ADN Mitocondrial/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Animales , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/líquido cefalorraquídeo , Fosforilación , Presenilina-1/genética , Síntomas Prodrómicos , Proteínas tau/líquido cefalorraquídeo
14.
J Neurosci ; 32(4): 1453-66, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22279230

RESUMEN

In cultured cerebellar granule neurons, low neuronal activity triggers the intrinsic program of apoptosis, which requires protein synthesis-dependent BAX translocation to mitochondria, a process that may underlie neuronal damage in neurodegeneration. However, the mechanisms that link neuronal activity with the induction of the mitochondrial program of apoptosis remain unclear. Neuronal pentraxin 1 (NP1) is a pro-apoptotic protein induced by low neuronal activity that is increased in damaged neurites in Alzheimer's disease-affected brains. Here we report that NP1 facilitates the accumulation of BAX in mitochondria and regulates mitochondrial dynamics during apoptosis in rat and mouse cerebellar granule neurons in culture. Reduction of neuronal activity increases NP1 protein levels in mitochondria and contributes to mitochondrial fragmentation in a Bax-dependent manner. In addition, NP1 is involved in mitochondrial transport in healthy neurons. These results show that NP1 is targeted to mitochondria acting upstream of BAX and uncover a novel function for NP1 in the regulation of mitochondrial dynamics and trafficking during apoptotic neurodegeneration.


Asunto(s)
Proteína C-Reactiva/fisiología , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Simulación de Dinámica Molecular , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA