Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur J Neurol ; : e16318, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700361

RESUMEN

BACKGROUND: Current proposed criteria for functional cognitive disorder (FCD) have not been externally validated. We sought to analyse the current perspectives of cognitive specialists in the diagnosis and management of FCD in comparison with neurodegenerative conditions. METHODS: International experts in cognitive disorders were invited to assess seven illustrative clinical vignettes containing history and bedside characteristics alone. Participants assigned a probable diagnosis and selected the appropriate investigation and treatment. Qualitative, quantitative and inter-rater agreement analyses were undertaken. RESULTS: Eighteen diagnostic terminologies were assigned by 45 cognitive experts from 12 countries with a median of 13 years of experience, across the seven scenarios. Accurate discrimination between FCD and neurodegeneration was observed, independently of background and years of experience: 100% of the neurodegenerative vignettes were correctly classified and 75%-88% of the FCD diagnoses were attributed to non-neurodegenerative causes. There was <50% agreement in the terminology used for FCD, in comparison with 87%-92% agreement for neurodegenerative syndromes. Blood tests and neuropsychological evaluation were the leading diagnostic modalities for FCD. Diagnostic communication, psychotherapy and psychiatry referral were the main suggested management strategies in FCD. CONCLUSIONS: Our study demonstrates the feasibility of distinguishing between FCD and neurodegeneration based on relevant patient characteristics and history details. These characteristics need further validation and operationalisation. Heterogeneous labelling and framing pose clinical and research challenges reflecting a lack of agreement in the field. Careful consideration of FCD diagnosis is advised, particularly in the presence of comorbidities. This study informs future research on diagnostic tools and evidence-based interventions.

2.
Eur J Neurol ; : e16321, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676302

RESUMEN

BACKGROUND: The COVID-19 pandemic has made its mark on world history forever causing millions of deaths, and straining health systems, economies, and societies worldwide. The European Academy of Neurology (EAN) reacted promptly. A special NeuroCOVID-19 Task Force was set up at the beginning of the pandemic to promote knowledge, research, international collaborations, and raise awareness about the prevention and treatment of COVID-19-related neurological issues. METHODS: Activities carried out during and after the pandemic by the EAN NeuroCOVID-19 Task Force are described. The main aim was to review all these initiatives in detail as an overarching lesson from the past to improve the present and be better prepared in case of future pandemics. RESULTS: During the pandemic, the Task Force was engaged in several initiatives: the creation of the EAN NEuro-covid ReGistrY (ENERGY); the launch of several surveys (neurological manifestations of COVID-19 infection; the pandemic's impact on patients with chronic neurological diseases; the pandemic's impact of restrictions for clinical practice, curricular training, and health economics); the publication of position papers regarding the management of patients with neurological diseases during the pandemic, and vaccination hesitancy among people with chronic neurological disorders; and the creation of a dedicated "COVID-19 Breaking News" section in EANpages. CONCLUSIONS: The EAN NeuroCOVID-19 Task Force was immediately engaged in various activities to participate in the fight against COVID-19. The Task Force's concerted strategy may serve as a foundation for upcoming global neurological emergencies.

3.
Clin Neurophysiol ; 163: 280-291, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679530

RESUMEN

A significant amount of European basic and clinical neuroscience research includes the use of transcranial magnetic stimulation (TMS) and low intensity transcranial electrical stimulation (tES), mainly transcranial direct current stimulation (tDCS). Two recent changes in the EU regulations, the introduction of the Medical Device Regulation (MDR) (2017/745) and the Annex XVI have caused significant problems and confusions in the brain stimulation field. The negative consequences of the MDR for non-invasive brain stimulation (NIBS) have been largely overlooked and until today, have not been consequently addressed by National Competent Authorities, local ethical committees, politicians and by the scientific communities. In addition, a rushed bureaucratic decision led to seemingly wrong classification of NIBS products without an intended medical purpose into the same risk group III as invasive stimulators. Overregulation is detrimental for any research and for future developments, therefore researchers, clinicians, industry, patient representatives and an ethicist were invited to contribute to this document with the aim of starting a constructive dialogue and enacting positive changes in the regulatory environment.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Investigación Biomédica , Aprobación de Recursos/legislación & jurisprudencia , Europa (Continente) , Unión Europea , Legislación de Dispositivos Médicos , Estimulación Magnética Transcraneal/métodos
4.
J Neurol Sci ; 458: 122925, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340409

RESUMEN

BACKGROUND: Post-stroke movement disorders (PSMD) encompass a wide array of presentations, which vary in mode of onset, phenomenology, response to treatment, and natural history. There are no evidence-based guidelines on the diagnosis and treatment of PSMD. OBJECTIVES: To survey current opinions and practices on the diagnosis and treatment of PSMD. METHODS: A survey was developed by the PSMD Study Group, commissioned by the International Parkinson's and Movement Disorders Society (MDS). The survey, distributed to all members, yielded a total of 529 responses, 395 (74.7%) of which came from clinicians with experience with PSMD. RESULTS: Parkinsonism (68%), hemiballismus/hemichorea (61%), tremor (58%), and dystonia (54%) were by far the most commonly endorsed presentation of PSMD, although this varied by region. Basal ganglia stroke (76% of responders), symptoms contralateral to stroke (75%), and a temporal relationship (59%) were considered important factors for the diagnosis of PSMD. Oral medication use depended on the phenomenology of the PSMD. Almost 50% of respondents considered deep brain stimulation and ablative surgeries as options for treatment. The lack of guidelines for the diagnosis and treatment was considered the most important gap to address. CONCLUSIONS: Regionally varying opinions and practices on PSMD highlight gaps in (and mistranslation of) epidemiologic and therapeutic knowledge. Multicenter registries and prospective community-based studies are needed for the creation of evidence-based guidelines to inform the diagnosis and treatment of patients with PSMD.


Asunto(s)
Trastornos del Movimiento , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Trastornos del Movimiento/etiología , Trastornos del Movimiento/terapia , Trastornos del Movimiento/diagnóstico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Temblor , Encuestas y Cuestionarios
5.
Eur J Neurol ; 31(3): e16168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038262

RESUMEN

BACKGROUND AND PURPOSE: The COVID-19 pandemic has significantly impacted health systems worldwide. Here, we assessed the pandemic's impact on clinical service, curricular training, and financial burden from a neurological viewpoint during the enforced lockdown periods and the assumed recovery by 2023. METHODS: An online 18-item survey was conducted by the European Academy of Neurology (EAN) NeuroCOVID-19 Task Force among the EAN community. The survey was online between February and March 2023. Questions related to general, demographic, clinical, work, education, and economic aspects. RESULTS: We collected 430 responses from 79 countries. Most health care professionals were aged 35-44 years, with >15 years of work experience. The key findings of their observations were as follows. (i) Clinical services were cut back in all neurological subspecialties during the most restrictive COVID-19 lockdown period. The most affected neurological subspecialties were services for patients with dementia, and neuromuscular and movement disorders. The levels of reduction and the pace of recovery were distinct for acute emergencies and in- and outpatient care. Recovery was slow for sleep medicine, autonomic nervous system disorders, neurorehabilitation, and dementia care. (ii) Student and residency rotations and grand rounds were reorganized, and congresses were converted into a virtual format. Conferences are partly maintained in a hybrid format. (iii) Affordability of neurological care and medication shortage are emerging issues. CONCLUSIONS: Recovery of neurological services up to spring 2023 has been incomplete following substantial disruption of neurological care, medical education, and health economics in the wake of the COVID-19 pandemic. The continued limitations for the delivery of neurological care threaten brain health and call for action on a global scale.


Asunto(s)
COVID-19 , Demencia , Neurología , Humanos , Pandemias , SARS-CoV-2 , Control de Enfermedades Transmisibles , Neurología/educación
6.
J Clin Med ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37240512

RESUMEN

Gambling disorder (GD) and internet gaming disorder (IGD) are formally recognized behavioral addictions with a rapidly growing prevalence and limited treatment options. Recently, transcranial electrical stimulation (tES) techniques have emerged as potentially promising interventions for improving treatment outcomes by ameliorating cognitive functions implicated in addictive behaviors. To systematize the current state of evidence and better understand whether and how tES can influence gambling and gaming-related cognitive processes, we conducted a PRISMA-guided systematic review of the literature, focusing on tES effects on gaming and gambling in a diverse range of population samples, including healthy participants, participants with GD and IGD, as well as participants with substance abuse addictions. Following the literature search in three bibliographic databases (PubMed, Web of Science, and Scopus), 40 publications were included in this review, with 26 conducted on healthy participants, 6 focusing on GD and IGD patients, and 8 including participants with other addictions. Most of the studies targeted the dorsolateral prefrontal cortex, using transcranial direct current stimulation (tDCS), and assessed the effects on cognition, using gaming and gambling computerized cognitive tasks measuring risk taking and decision making, e.g., balloon analogue risk task, Iowa gambling task, Cambridge gambling task, etc. The results indicated that tES could change gambling and gaming task performances and positively influence GD and IGD symptoms, with 70% of studies showing neuromodulatory effects. However, the results varied considerably depending on the stimulation parameters, sample characteristics, as well as outcome measures used. We discuss the sources of this variability and provide further directions for the use of tES in the context of GD and IGD treatment.

7.
Life (Basel) ; 13(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37240770

RESUMEN

Associative memory (AM) is the ability to bind new information into complex memory representations. Noninvasive brain stimulation (NIBS), especially transcranial electric stimulation (tES), has gained increased interest in research of associative memory (AM) and its impairments. To provide an overview of the current state of knowledge, we conducted a systematic review following PRISMA guidelines covering basic and clinical research. Out of 374 identified records, 41 studies were analyzed-twenty-nine in healthy young adults, six in the aging population, three comparing older and younger adults, as well as two studies on people with MCI, and one in people with Alzheimer's dementia. Studies using transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS) as well as oscillatory (otDCS) and high-definition protocols (HD-tDCS, HD-tACS) have been included. The results showed methodological heterogeneity in terms of study design, stimulation type, and parameters, as well as outcome measures. Overall, the results show that tES is a promising method for AM enhancement, especially if the stimulation is applied over the parietal cortex and the effects are assessed in cued recall paradigms.

8.
J Pers Med ; 12(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36143152

RESUMEN

Non-invasive brain stimulation (NIBS) methods have gained increased interest in research and therapy of associative memory (AM) and its impairments. However, the one-size-fits-all approach yields inconsistent findings, thus putting forward the need for electroencephalography (EEG)-guided personalized frequency-modulated NIBS protocols to increase the focality and the effectiveness of the interventions. Still, extraction of individual frequency, especially in the theta band, turned out to be a challenging task. Here we present an approach to extracting the individual theta-band frequency (ITF) from EEG signals recorded during the AM task. The method showed a 93% success rate, good reliability, and the full range of variability of the extracted ITFs. This paper provides a rationale behind the adopted approach and critically evaluates it in comparison to the alternative methods that have been reported in the literature. Finally, we discuss how it could be used as an input parameter for personalized frequency-modulated NIBS approaches-transcranial alternating current stimulation (tACS) and transcranial oscillatory current stimulation (otDCS) directed at AM neuromodulation.

9.
Sci Rep ; 12(1): 14091, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982223

RESUMEN

Associative memory (AM) is the ability to remember and retrieve multiple items bound together. Previous studies aiming to modulate AM by various transcranial electric stimulation (tES) techniques were inconclusive, although overall suggestive that tES could be a tool for AM enhancement. However, evidence from a direct comparison between different tES techniques is lacking. Here, in a sham-controlled cross-over experiment, we comparatively assessed the effects of three types of tES-anodal tDCS, theta-band transcranial alternating current stimulation (tACS), and theta-oscillatory tDCS (otDCS), delivered over the left posterior parietal cortex, during a short-term digit-color AM task with cued-recall. The effects were tested in 40 healthy young participants while both oscillatory tES were delivered at a previously determined individual theta frequency (4-8 Hz). All three active stimulations facilitated the overall AM performance, and no differences could be detected between them on direct comparison. However, unlike tDCS, the effects of which appeared to stem mainly from the facilitation of low-memory demand trials, both theta-modulated tACS and otDCS primarily promoted AM in high memory demand trials. Comparable yet differential effects of tDCS, theta tACS, and otDCS could be attributed to differences in their presumed modes of action.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estudios Cruzados , Estimulación Eléctrica/métodos , Humanos , Memoria a Corto Plazo/fisiología , Recuerdo Mental , Lóbulo Parietal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
10.
Brain Sci ; 12(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35448003

RESUMEN

Associative memory (AM) is the ability to remember the relationship between previously unrelated items. AM is significantly affected by normal aging and neurodegenerative conditions, thus there is a growing interest in applying non-invasive brain stimulation (NIBS) techniques for AM enhancement. A growing body of studies identifies posterior parietal cortex (PPC) as the most promising cortical target for both transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) to modulate a cortico-hippocampal network that underlines AM. In that sense, theta frequency oscillatory tES protocols, targeted towards the hallmark oscillatory activity within the cortico-hippocampal network, are increasingly coming to prominence. To increase precision and effectiveness, the need for EEG guided individualization of the tES protocols is proposed. Here, we present the study protocol in which two types of personalized oscillatory tES-transcranial alternating current stimulation (tACS) and oscillatory transcranial direct current stimulation (otDCS), both frequency-modulated to the individual theta-band frequency (ITF), are compared to the non-oscillatory transcranial direct current stimulation (tDCS) and to the sham stimulation. The study has cross-over design with four tES conditions (tACS, otDCS, tDCS, sham), and the comprehensive set of neurophysiological (resting state EEG and AM-evoked EEG) and behavioral outcomes, including AM tasks (short-term associative memory, face-word, face-object, object-location), as well as measures of other cognitive functions (cognitive control, verbal fluency, and working memory).

11.
Artículo en Inglés | MEDLINE | ID: mdl-35055686

RESUMEN

This study assessed the level of knowledge, attitudes, and practices (KAP) regarding tick-borne encephalitis virus (TBEV) and tick-borne diseases (TBDs) among different groups of people in Serbia. Professionally tick-exposed persons (PTEPs), health care workers (HCWs), and the general population (GP) were subjected to an anonymous, voluntary, online questionnaire using Microsoft Forms. A total of 663 questionnaire responses were collected (February-March 2021), while 642 were included in the analysis. The significant difference in knowledge in TBDs existed between GP and PTEPs, and HCWs (p < 0.001). The perception of risk-to-tick exposure and TBDs was generally high (42.4 (95% CI: 33.6-51.2) within GP, 44.9 (95% CI: 35.8-53.9) within PTEPs and 46.2 (95% CI: 38.0-54.5) within HCWs), while fear was low (13.7 (95% CI: 7.9-19.5) within GP, 12.6 (95% CI: 7.3-19.9) within PTEPs, and 13.5 (95% CI: 7.4-19.5) within HCWs). Protective practices differed across groups (F (2639) = 12.920, p < 0.001, η2 = 0.039), with both PTEPs (t = 3.621, Cohen d = 0.332, p < 0.001) and HCWs (t = 4.644, Cohen d = 0.468, p < 0.001) adhering to more protective practices than the GP, without differences between PTEPs and HCWs (t = 1.256, Cohen d = 0.137, p = 0.421). Further education about TBDs in Serbia is required and critical points were identified in this study.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Encefalitis Transmitida por Garrapatas/epidemiología , Conocimientos, Actitudes y Práctica en Salud , Personal de Salud , Humanos , Serbia/epidemiología , Encuestas y Cuestionarios
12.
Front Neurol ; 12: 763911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867748

RESUMEN

Background: Although dopaminergic medication has been the foundation of Parkinson's disease (PD) therapy for decades, sensitive and specific therapeutic response biomarkers that allow for better treatment optimization are lacking. Objective: We tested whether the features of Transcranial Magnetic Stimulation-based neurophysiological measures taken off-medication are associated with dopaminergic medication-induced clinical effects. Method: Motor cortex excitability [short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), and input-output (IO) curve], and plasticity [paired associative stimulation (PAS) protocol] neurophysiological measures were examined in 23 PD patients off-medication. Clinical features were quantified by the motor section of the Unified Parkinson's Disease Scale (total score and lateralized total, bradykinesia, and rigidity sub-scores), and the differences between measures off-medication and on-medication (following the usual morning dose), were determined. Total daily dopaminergic medication dose (expressed as levodopa equivalent daily dose-LEDD), was also determined. Results: SICI significantly correlated with changes in lateralized UPDRS motor and bradykinesia sub-scores, suggesting that patients with stronger basal intracortical inhibition benefit more from dopaminergic treatment than patients with weaker intracortical inhibition. Also, ICF significantly negatively correlated with LEDD, suggesting that patients with stronger intracortical facilitation require less dopaminergic medication to achieve optimal therapeutic benefit. Both associations were independent of disease severity and duration. Conclusions: The results suggest variability of (patho) physiological phenotypes related to intracortical inhibitory and facilitatory mechanisms determining clinical response to dopaminergic medication in PD. Measures of intracortical excitability may help predict patients' response to dopaminergic therapy, thus potentially providing a background for developing personalized therapy in PD.

13.
J Vis Exp ; (175)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34605816

RESUMEN

Memory enhancement is one of the great challenges in cognitive neuroscience and neurorehabilitation. Among various techniques used for memory enhancement, transcranial direct current stimulation (tDCS) is emerging as an especially promising tool for improvement of memory functions in a non-invasive manner. Here, we present a tDCS protocol that can be applied for memory enhancement in healthy-participant studies as well as in aging and dementia research. The protocol uses weak constant anodal current to stimulate cortical targets within cortico-hippocampal functional network engaged in memory processes. The target electrode is placed either on the posterior parietal cortex (PPC) or the dorsolateral prefrontal cortex (DLPFC), while the return electrode is placed extracranially (i.e., on the contralateral cheek). In addition, we outline a more advanced method of oscillatory tDCS, mimicking a natural brain rhythm to promote hippocampus-dependent memory functions, which can be applied in a personalized and non-personalized manner. We present illustrative results of associative and working memory improvement following single tDCS sessions (20 minutes) in which the described electrode montages were used with current intensities between 1.5 mA and 1.8 mA. Finally, we discuss crucial steps in the protocol and methodological decisions that must be made when designing a tDCS study on memory.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Voluntarios Sanos , Hipocampo , Humanos , Memoria a Corto Plazo , Corteza Prefrontal
14.
Neurobiol Learn Mem ; 179: 107398, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33540112

RESUMEN

Working memory (WM) is a limited-capacity system or set of processes that enables temporary storage and manipulation of information essential for complex cognitive processes. The WM performance is supported by a widespread neural network in which fronto-parietal functional connections have a pivotal role. Transcranial direct current stimulation (tDCS) is rapidly emerging as a promising tool for understanding the role of various cortical areas and their functional networks on cognitive performance. Here we comprehensively evaluated the effects of tDCS on WM by conducting three cross-over counterbalanced sham-controlled experiments in which we contrasted the effects and interactions of the anodal (i.e. facilitatory) tDCS across anterior-posterior (i.e. DLPFC vs PPC) and left-right (i.e. the lateralization) axes, and across online and offline protocols using both verbal and spatial WM (3-back) tasks as outcomes. In the offline protocols, left DLPFC stimulation affected neither verbal nor spatial WM, while left PPC stimulation increased spatial WM. When applied offline over right DLPFC, tDCS improved verbal WM task and marginally enhanced spatial WM; while when tDCS was applied over the right PPC, facilitatory effects were observed on verbal WM. In the online protocol, tDCS did not modulate WM regardless of the task modality or stimulation loci. In summary, the study did not replicate the left DLPFC tDCS effect on WM, found in some of the previous studies, but demonstrated positive effects of stimulation of the right DLPFC as well as PPC bilaterally. The observed effects varied across modality of the 3-back task, and tDCS protocol applied. The results of this study argue for moving towards targeting the lesser-explored stimulation sites within the fronto-parietal network, such as PPC, to gain a better understanding of the usefulness of tDCS for WM neuromodulation.


Asunto(s)
Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Memoria Espacial/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
15.
Sci Rep ; 11(1): 3013, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542344

RESUMEN

Associative memory (AM) reflects the ability to remember and retrieve multiple pieces of information bound together thus enabling complex episodic experiences. Despite growing interest in the use of transcranial direct current stimulation (tDCS) for the modulation of AM, there are inconsistent evidence regarding its benefits. An alternative to standard constant tDCS could be the application of frequency-modulated tDCS protocols, that mimic natural function-relevant brain rhythms. Here, we show the effects of anodal tDCS oscillating in theta rhythm (5 Hz; 1.5 ± 0.1 mA) versus constant anodal tDCS and sham over left posterior parietal cortex on cued recall of face-word associations. In a crossover design, each participant completed AM assessment immediately following 20-min theta-oscillatory, constant, and sham tDCS, as well as 1 and 5 days after. Theta oscillatory tDCS increased initial AM performance in comparison to sham, and so did constant tDCS. On the group level, no differences between oscillatory and constant tDCS were observed, but individual-level analysis revealed that some participants responded to theta-oscillatory but not to constant tDCS, and vice versa, which could be attributed to their different physiological modes of action. This study shows the potential of oscillatory tDCS protocols for memory enhancement to produce strong and reliable memory-modulating effects which deserve to be investigated further.


Asunto(s)
Cognición/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Ritmo Teta/fisiología , Adulto , Cognición/efectos de la radiación , Femenino , Humanos , Masculino , Memoria , Recuerdo Mental/fisiología , Recuerdo Mental/efectos de la radiación , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/efectos de la radiación , Corteza Prefrontal/efectos de la radiación , Ritmo Teta/efectos de la radiación , Estimulación Transcraneal de Corriente Directa/métodos , Adulto Joven
16.
Brain Sci ; 12(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35053802

RESUMEN

Transcranial direct current stimulation (tDCS) has become a valuable tool in cognitive neuroscience research as it enables causal inferences about neural underpinnings of cognition. However, studies using tDCS to modulate cognitive functions often yield inconsistent findings. Hence, there is an increasing interest in factors that may moderate the effects, one of which is the participants' beliefs of the tDCS condition (i.e., real or sham) they received. Namely, whether participants' correct guessing of sham condition may lead to false-positive tDCS effects. In this study, we aimed to explore if participants' beliefs about received stimulation type (i.e., the success of blinding) impacted their task performance in tDCS experiments on associative (AM) and working memory (WM). We analyzed data from four within-subject, sham-controlled tDCS memory experiments (N = 83) to check if the correct end-of-study guess of sham condition moderated tDCS effects. We found no evidence that sham guessing moderated post-tDCS memory performance in experiments in which tDCS effects were observed as well as in experiments that showed null effects of tDCS. The results suggest that the correct sham guessing (i.e., placebo-like effect) is unlikely to influence the results in tDCS memory experiments. We discuss the results in light of the growing debate about the relevance and effectiveness of blinding in brain stimulation research.

18.
Clin Neurophysiol ; 131(2): 474-528, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31901449

RESUMEN

A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.


Asunto(s)
Trastornos Mentales/terapia , Enfermedades del Sistema Nervioso/terapia , Guías de Práctica Clínica como Asunto , Estimulación Magnética Transcraneal/métodos , Medicina Basada en la Evidencia/normas , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/normas
19.
J Sports Sci Med ; 18(2): 282-289, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31191098

RESUMEN

The purpose of this study was to examine the acute effects of static stretching (SS) and dynamic stretching (DS), alone and in combination with specific basketball warm-up (SBWU), on the neuromuscular excitability and vertical jump height in basketball players. Twelve healthy young male basketball players participated in the study (18 ± 0.42 years; 17.4 - 18.6 age range; 188 ± 9 cm; 76.5 ± 9 kg). All participants completed two different stretching treatments (static and dynamic), performed on different days at least seven days apart, in the same period of training microcycle, in a counterbalanced order. Each session consisted of a self-paced jogging warm-up, followed by a 10-minute testing period (T0), which involved eliciting H reflex and M waves, followed by three trials of a vertical jump test. Participants then performed one of the treatment protocols. After another test (T1), participants conducted 8-minute specific basketball warm-up and then one more test (T2). Combined 3 (time) x 2 (stretching protocol) analysis of variance with repeated measures on both factors revealed that SS significantly decreased spinal excitability (H/M ratio) (p = 0.015, d = -0.38, percentage of change = -20.55%) and vertical jump height (p = 0.007, d = -1.91, percentage of change = -2.6%), but after SBWU, vertical jump height increased (p = 0.006, d = 1.13, percentage of change = 3.01%), while H/M ratio continued decreasing (p = 0.019, d = -0.45, percentage of change = -30.23%). Acute effects of DS, alone and in combination with SBWU were not significant. It seems that SBWU attenuates negative acute effects of SS on vertical jump performance in young basketball players, while DS appears to cause no significant acute effect for this population.


Asunto(s)
Rendimiento Atlético/fisiología , Baloncesto , Ejercicios de Estiramiento Muscular/métodos , Ejercicio de Calentamiento , Adolescente , Electromiografía , Humanos , Masculino , Músculo Esquelético/fisiología
20.
Behav Brain Res ; 366: 88-95, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30880221

RESUMEN

Associative memory (AM), an ability to form and retrieve associations between information units is crucial for everyday functioning and is affected by aging as well as by different neurological conditions. It was shown that rTMS over posterior parietal cortex (PPC) can improve AM of face-word pairs. Therefore, we examined if tDCS will produce comparable effects and explore whether the effect would persist one and five days following the stimulation. Thirty-seven healthy participants took part in cross-over sham-controlled study in which they received 20 min of anodal (1.5 mA) or sham tDCS over left PPC. Following tDCS participants completed face-cued word recall and verbal fluency tasks. A randomly selected subsample (N = 18) has completed follow up memory assessments one and five days after the stimulation. Anodal tDCS facilitated AM performance in comparison to sham with the same trend persisting during the 5-day follow-up period. Additionally, participants with lower AM scores had higher relative gain following anodal tDCS. Anodal tDCS had no effect on the control task (verbal fluency). Results support the existence of a specific enhancing effect on AM produced by facilitatory neuromodulation of the PPC. The effect was more prominent in low-performers and it persisted at least 5 days post-stimulation. These findings support the robustness of tDCS effect on AM and provide a foundation for future research that could lead to its future clinical application.


Asunto(s)
Memoria/fisiología , Lóbulo Parietal/metabolismo , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Atención/fisiología , Cognición/fisiología , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Magnética Transcraneal/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA