Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plants (Basel) ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891383

RESUMEN

Climate change is leading to an increase in the intensity, duration, and frequency of severe droughts, especially in southern and southeastern Europe, thus aggravating water scarcity problems. Water deficit stress harms the growth, physiology, and yield of crops like durum wheat. Hence, studying ancient wheat varieties' stress responses could help identify genetic traits to enhance crop tolerance to environmental stresses. In this background, this study aimed to investigate the effects of PEG 6000-stimulated drought stress in the ancient wheat variety Saragolla and the modern one Svevo by analyzing various biochemical and molecular parameters that can especially condition the stomatal movement. Our data revealed that drought stress caused a significant increase in the levels of total soluble sugars, ABA, and IAA in both selected cultivars to a greater extent in the Saragolla than in the Svevo. We demonstrated that, under water deficit stress, calcium dynamics as well as the expression of ERF109, MAPK3/6, MYB60, and TaTPC1, involved in the activation of drought-related calcium-sensitive pathways, display significant differences between the two varieties. Therefore, our study provided further evidence regarding the ability of the ancient wheat variety Saragolla to better cope with drought stress compared to the modern variety Svevo.

2.
Sci Rep ; 14(1): 12096, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802434

RESUMEN

Biostimulants are heterogeneous products designed to support plant development and to improve the yield and quality of crops. Here, we focused on the effects of triacontanol, a promising biostimulant found in cuticle waxes, on tomato growth and productivity. We examined various phenological traits related to vegetative growth, flowering and fruit yield, the metabolic profile of fruits, and the response of triacontanol-treated plants to salt stress. Additionally, a proteomic analysis was conducted to clarify the molecular mechanisms underlying triacontanol action. Triacontanol application induced advanced and increased blooming without affecting plant growth. Biochemical analyses of fruits showed minimal changes in nutritional properties. The treatment also increased the germination rate of seeds by altering hormone homeostasis and reduced salt stress-induced damage. Proteomics analysis of leaves revealed that triacontanol increased the abundance of proteins related to development and abiotic stress, while down-regulating proteins involved in biotic stress resistance. The proteome of the fruits was not significantly affected by triacontanol, confirming that biostimulation did not alter the nutritional properties of fruits. Overall, our findings provide evidence of the effects of triacontanol on growth, development, and stress tolerance, shedding light on its mechanism of action and providing new insights into its potential in agricultural practices.


Asunto(s)
Alcoholes Grasos , Frutas , Solanum lycopersicum , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Alcoholes Grasos/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Frutas/química , Proteómica/métodos , Fenotipo , Proteínas de Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Germinación/efectos de los fármacos , Estrés Salino , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/crecimiento & desarrollo
3.
Front Plant Sci ; 14: 1241281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900753

RESUMEN

Due to drought stress, durum wheat production in the Mediterranean basin will be severely affected in the coming years. Durum wheat cultivation relies on a few genetically uniform "modern" varieties, more productive but less tolerant to stresses, and "traditional" varieties, still representing a source of genetic biodiversity for drought tolerance. Root architecture plasticity is crucial for plant adaptation to drought stress and the relationship linking root structures to drought is complex and still largely under-explored. In this study, we examined the effect of drought stress on the roots' characteristics of the "traditional" Saragolla cultivar and the "modern" Svevo. By means of "SmartRoot" software, we demonstrated that drought stress affected primary and lateral roots as well as root hair at different extents in Saragolla and Svevo cultivars. Indeed, we observed that under drought stress Saragolla possibly revamped its root architecture, by significantly increasing the length of lateral roots, and the length/density of root hairs compared to the Svevo cultivar. Scanning Electron Microscopy analysis of root anatomical traits demonstrated that under drought stress a greater stele area and an increase of the xylem lumen size vessel occurred in Saragolla, indicating that the Saragolla variety had a more efficient adaptive response to osmotic stress than the Svevo. Furthermore, for the analysis of root structural data, Artificial Intelligence (AI) algorithms have been used: Their application allowed to predict from root structural traits modified by the osmotic stress the type of cultivar observed and to infer the relationship stress-cultivar type, thus demonstrating that root structural traits are clear and incontrovertible indicators of the higher tolerance to osmotic stress of the Saragolla cultivar. Finally, to obtain an integrated view of root morphogenesis, phytohormone levels were investigated. According to the phenotypic effects, under drought stress,a larger increase in IAA and ABA levels, as well as a more pronounced reduction in GA levels occurred in Saragolla as compared to Svevo. In conclusion, these results show that the root growth and hormonal profile of Saragolla are less affected by osmotic stress than those of Svevo, demonstrating the great potential of ancient varieties as reservoirs of genetic variability for improving crop responses to environmental stresses.

4.
Plants (Basel) ; 12(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37571041

RESUMEN

The geomagnetic field (GMF) is a natural component of the biosphere, and, during evolution, all organisms experienced its presence while some evolved the ability to perceive magnetic fields (MF). We studied the response of 14-3-3 proteins and the plasma membrane (PM) proton pump H+-ATPase to reduced GMF values by lowering the GMF intensity to a near-null magnetic field (NNMF). Seedling morphology, H+-ATPase activity and content, 14-3-3 protein content, binding to PM and phosphorylation, gene expression, and ROS quantification were assessed in maize (Zea mays) dark-grown seedlings. Phytohormone and melatonin quantification were also assessed by LG-MS/MS. Our results suggest that the GMF regulates the PM H+-ATPase, and that NNMF conditions alter the proton pump activity by reducing the binding of 14-3-3 proteins. This effect was associated with both a reduction in H2O2 and downregulation of genes coding for enzymes involved in ROS production and scavenging, as well as calcium homeostasis. These early events were followed by the downregulation of IAA synthesis and gene expression and the increase in both cytokinin and ABA, which were associated with a reduction in root growth. The expression of the homolog of the MagR gene, ZmISCA2, paralleled that of CRY1, suggesting a possible role of ISCA in maize magnetic induction. Interestingly, melatonin, a widespread molecule present in many kingdoms, was increased by the GMF reduction, suggesting a still unknown role of this molecule in magnetoreception.

5.
Plants (Basel) ; 12(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37111928

RESUMEN

Salt stress is a major abiotic stress limiting plant survival and crop productivity. Plant adaptation to salt stress involves complex responses, including changes in gene expression, regulation of hormone signaling, and production of stress-responsive proteins. The Salt Tolerance-Related Protein (STRP) has been recently characterized as a Late Embryogenesis Abundant (LEA)-like, intrinsically disordered protein involved in plant responses to cold stress. In addition, STRP has been proposed as a mediator of salt stress response in Arabidopsis thaliana, but its role has still to be fully clarified. Here, we investigated the role of STRP in salt stress responses in A. thaliana. The protein rapidly accumulates under salt stress due to a reduction of proteasome-mediated degradation. Physiological and biochemical responses of the strp mutant and STRP-overexpressing (STRP OE) plants demonstrate that salt stress impairs seed germination and seedling development more markedly in the strp mutant than in A. thaliana wild type (wt). At the same time, the inhibitory effect is significantly reduced in STRP OE plants. Moreover, the strp mutant has a lower ability to counteract oxidative stress, cannot accumulate the osmocompatible solute proline, and does not increase abscisic acid (ABA) levels in response to salinity stress. Accordingly, the opposite effect was observed in STRP OE plants. Overall, obtained results suggest that STRP performs its protective functions by reducing the oxidative burst induced by salt stress, and plays a role in the osmotic adjustment mechanisms required to preserve cellular homeostasis. These findings propose STRP as a critical component of the response mechanisms to saline stress in A. thaliana.

6.
Plants (Basel) ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771510

RESUMEN

Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.

7.
Plant Dis ; 107(2): 267-271, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35939740

RESUMEN

Great efforts have been made with chemicals and pesticides to contain the spread of Pseudomonas syringae pv. actinidiae (Psa) responsible for kiwifruit canker. Unfortunately, only partial results were obtained for this bacterial pandemic, and alternative remedies were proposed to avoid soil pollution and the onset of antibiotic resistance. Among these, phage therapy represents a possible tool with low environmental impact and high specificity. Several phages have been isolated and tested for the capacity to kill Psa in vitro, but experiments to verify their efficacy in vivo are still lacking. In the present study, we demonstrated that the phage φPSA2 (previously characterized) contains the spread of Psa inside plant tissue and reduces the symptoms of the disease. Our data are a strong indication for the efficiency of this phage and open the possibility of developing a phage therapy based on φPSA2 to counteract the bacterial canker of kiwifruit.


Asunto(s)
Actinidia , Terapia de Fagos , Pseudomonas syringae , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Actinidia/microbiología , Frutas/microbiología
8.
Food Funct ; 12(19): 9372-9379, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606543

RESUMEN

Potatoes are one of the main sources of carbohydrates in human diet, however they have a high glycaemic index (GI). Hence, developing new agricultural and industrial strategies to produce low GI potatoes represents a health priority to prevent obesity and related diseases. In this work, we investigated whether treatments of potato plants with elicitors of plant defence responses can lead to a reduction of tuber starch availability and digestibility, through the induction of cell wall remodelling and stiffening. Treatments with phosphites (KPhi) and borate were performed, as they are known to activate plant defence responses that cause modifications in the architecture and composition of the plant cell wall. Data of suberin autofluorescence demonstrated that potato plants grown in a nutrition medium supplemented with KPhi and borate produced tubers with a thicker periderm, while pectin staining demonstrated that KPhi treatment induced a reinforcement of the wall of storage parenchyma cells. Both compounds elicited the production of H2O2, which is usually involved in cell-wall remodelling and stiffening reactions while only KPhi caused an increase of the total content of phenolic compounds. A two-phase digestion in vitro assay showed that treatment with KPhi determined a significant decrease of the starch hydrolysis rate in potato tubers. This work highlights the ability of cell wall architecture in modulating starch accessibility to digestive enzymes, paving the way for new agronomic practices to produce low GI index potatoes.


Asunto(s)
Boratos/farmacología , Pared Celular/ultraestructura , Fosfitos/farmacología , Tubérculos de la Planta/efectos de los fármacos , Compuestos de Potasio/farmacología , Solanum tuberosum/efectos de los fármacos , Almidón/metabolismo , Digestión , Flavonoides/metabolismo , Índice Glucémico , Peróxido de Hidrógeno/metabolismo , Hidroxibenzoatos/metabolismo , Técnicas In Vitro , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/ultraestructura , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/ultraestructura , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Solanum tuberosum/ultraestructura
9.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572605

RESUMEN

Fusicoccin is the α glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug.


Asunto(s)
Proteínas 14-3-3/metabolismo , Enfermedades de las Plantas/microbiología , Fenómenos Fisiológicos de las Plantas , Toxinas Biológicas/toxicidad , Vías Biosintéticas , Glicósidos/química , Glicósidos/toxicidad , Relación Estructura-Actividad
10.
Front Plant Sci ; 11: 1251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903596

RESUMEN

Low temperature stress is one of the major causes of crop yield reduction in agriculture. The alteration of gene expression pattern and the accumulation of stress-related proteins are the main strategies activated by plants under this unfavourable condition. Here we characterize the Arabidopsis thaliana Salt Tolerance Related Protein (STRP). The protein rapidly accumulates under cold treatment, and this effect is not dependent on transcriptional activation of the STRP gene, but on the inhibition of proteasome-mediated degradation. Subcellular localization of STRP was determined by the transient expression of STRP-YFP in A. thaliana protoplasts. STRP is localized into the cytosol, nucleus, and associated to the plasma membrane. Under cold stress, the membrane-associated fraction decreases, while in the cytosol and in the nucleus STRP levels strongly increase. STRP has high similarity with WCI16, a wheat Late Embryogenesis Abundant (LEA)-like protein. Despite no canonical LEA motifs in the STRP sequence are present, physicochemical characterization demonstrated that STRP shares common features with LEA proteins, being a high hydrophilic unstructured protein, highly soluble after boiling and with cryoprotectant activity. To clarify the physiological function of STRP, we characterized the phenotype and the response to low temperature stress of the strp knockout mutant. The mutation causes an equal impairment of plant growth and development both in physiological and cold stress conditions. The strp mutant is more susceptible to oxidative damage respect to the wild type, showing increased lipid peroxidation and altered membrane integrity. Furthermore, the analysis of Abscisic acid (ABA) effects on protein levels demonstrated that the hormone induces the increase of STRP levels, an effect in part ascribable to its ability to activate STRP expression. ABA treatments showed that the strp mutant displays an ABA hyposensitive phenotype in terms of seed germination, root development, stomata closure and in the expression of ABA-responsive genes. In conclusion, our results demonstrate that STRP acts as a multifunctional protein in the response mechanisms to low temperature, suggesting a crucial role for this protein in stress perception and in the translation of extracellular stimuli in an intracellular response.

11.
Plant Sci ; 289: 110215, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623776

RESUMEN

14-3-3 proteins are a family of conserved proteins present in eukaryotes as several isoforms, playing a regulatory role in many cellular and physiological processes. In plants, 14-3-3 proteins have been reported to be involved in the response to stress conditions, such as drought, salt and cold. In the present study, 14-3-3ε and 14-3-3ω isoforms, which were representative of ε and non-ε phylogenetic groups, were overexpressed in Arabidopsis thaliana plants; the effect of their overexpression was investigated on H+-ATPase activation and plant response to cold stress. Results demonstrated that H+-ATPase activity was increased in 14-3-3ω-overexpressing plants, whereas overexpression of both 14-3-3 isoforms brought about cold stress tolerance, which was evaluated through ion leakage, lipid peroxidation, osmolyte synthesis, and ROS production assays. A dedicated tandem mass tag (TMT)-based proteomic analysis demonstrated that different proteins involved in the plant response to cold or oxidative stress were over-represented in 14-3-3ε-overexpressing plants.


Asunto(s)
Proteínas 14-3-3/genética , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Proteínas 14-3-3/metabolismo , Aclimatación/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA