Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 156: 106598, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815435

RESUMEN

Material Jetting (MJ) 3D printing technology is promising for the fabrication of highly realistic surgical simulators, however, the changes in the mechanical properties of MJ materials after post-printing treatments and over time remain quite unknown. In this study, we investigate the effect of different post-printing processes and aging on the mechanical properties of a white opaque and rigid MJ photopolymer, a white flexible MJ photopolymer and on a combination of them. Tensile and Shore hardness tests were conducted on homogeneous 3D-printed specimens: two different post-printing procedures for support removal (dry and water) and further surface treatment (with glycerol solution) were compared. The specimens were tested within 48 h from printing and after aging (30-180 days) in a controlled environment. All groups of specimens treated with different post-printing processes (dry, water, glycerol) exhibited a statistically significant difference in mechanical properties (i.e. elongation at break, elastic modulus, ultimate tensile strength). Particularly, the treatment with glycerol makes the flexible photopolymer more rigid, but then with aging the initial elongation of the material tends to be restored. For the rigid photopolymer, an increase in deformability was observed as a major effect of aging. The hardness tests on the printed specimens highlighted a significant overestimation of the Shore values declared by the manufacturer. The study findings are useful for guiding the material selection and post-printing processing techniques to manufacture realistic and durable models for surgical training.


Asunto(s)
Ensayo de Materiales , Impresión Tridimensional , Fenómenos Mecánicos , Resistencia a la Tracción , Dureza , Factores de Tiempo , Polímeros/química , Glicerol/química
2.
Food Chem ; 443: 138567, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295567

RESUMEN

In this work, assessment of microplastics (MPs) in commercial vegetable edible oils from Italy and Spain, including extra-virgin olive oil, olive oil, sunflower oil, and mixed seed oil, has been conducted for the first time. The method was based on sample dilution with ethanol:n-hexane (1:3, v/v), homogenization, vacuum filtration on macroporous silicon filters with 5 µm pore diameter to collect MPs, and automatic µ-FTIR spectroscopy for MPs detection and characterization. In the analysis of oil samples, a mean MPs abundance of 1140 ± 350 MPs/L was found. Observed MPs were characterized, being most of them fragments (81.2 %), with particle sizes < 100 µm (77.5 %), and mainly composed of polyethylene (50.3 %) and polypropylene (28.7 %), among others. Statistical analysis revealed that there were not significant differences (p-value > 0.05) in the abundance of MPs between oil samples or types.


Asunto(s)
Aceites de Plantas , Verduras , Aceites de Plantas/química , Microplásticos , Plásticos , España , Aceite de Oliva/química , Italia
3.
Environ Pollut ; 326: 121511, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36967009

RESUMEN

Tire wear particles (TWPs) are one of the environment's most important emission sources of microplastics. In this work, chemical identification of these particles was carried out in highway stormwater runoff through cross-validation techniques for the first time. Optimization of a pre-treatment method (i.e., extraction and purification) was provided to extract TWPs, avoiding their degradation and denaturation, to prevent getting low recognizable identification and consequently underestimates in the quantification. Specific markers were used for TWPs identification comparing real stormwater samples and reference materials via FTIR-ATR, Micro-FTIR, and Pyrolysis-gas-chromatography-mass spectrometry (Pyr-GC/MS). Quantification of TWPs was carried out via Micro-FTIR (microscopic counting); the abundance ranged from 220,371 ± 651 TWPs/L to 358,915 ± 831 TWPs/L, while the higher mass was 39,6 ± 9 mg TWPs/L and the lowest 31,0 ± 8 mg TWPs/L. Most of the TWPs analyzed were less than 100 µm in size. The sizes were also confirmed using a scanning electron microscope (SEM), including the presence of potential nano TWPs in the samples. Elemental analysis via SEM supported that a complex mixture of heterogeneous composition characterizes these particles by agglomerating organic and inorganic particles that could derive from brake and road wear, road pavement, road dust, asphalts, and construction road work. Due to the analytical lack of knowledge about TWPs chemical identification and quantification in scientific literature, this study significantly contributes to providing a novel pre-treatment and analytical methodology for these emerging contaminants in highway stormwater runoff. The results of this study highlight the uttermost necessity to employ cross-validation techniques, i.e., FTIR-ATR, Micro-FTIR, Pyr-GC/MS, and SEM for the TWPs identification and quantification in the real environmental samples.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Monitoreo del Ambiente/métodos , Pirólisis , Espectroscopía Infrarroja por Transformada de Fourier , Polvo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA