Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Bioorg Med Chem ; 104: 117680, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582047

RESUMEN

Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.


Asunto(s)
Inhibidores de Histona Desacetilasas , Inhibidores de Proteasoma , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Proteasoma/farmacología , Complejo de la Endopetidasa Proteasomal , Bortezomib , Histona Desacetilasas , Histona Desacetilasa 6 , Histona Desacetilasa 1
2.
Bioeng Transl Med ; 9(1): e10611, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193117

RESUMEN

Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.

3.
RSC Adv ; 13(49): 34322-34334, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024975

RESUMEN

Overexpression of the anti-apoptotic protein MCL-1 is associated with a plethora of human cancers, and it reduces the sensitivity of cancer cells to approved chemotherapies. Accordingly, the discovery of MCL-1 inhibitors is an active area of interest. Many inhibitors of the anti-apoptotic MCL-1 protein bear a crucial carboxylic acid that may engage Arg263 in the BH3-binding groove. We previously described the salicylic acid-based dual MCL-1/BCL-xL inhibitor 17cd, which is currently undergoing lead optimization. As part of that process, we wished to investigate bioisosteric replacement of 17cd's key carboxylic acid. Herein we describe the synthesis of a variety of analogues of a simpler analogue of 17cd presenting carboxylic acid surrogates. The acylsulfonamide and tetrazole motifs, which exhibit comparable pKas to the carboxylic acid function, displayed similar, or better, binding affinities to MCL-1 and BCL-xL as the corresponding carboxylic acid-containing lead. Our best compound was acylsulfonamide 7d with a Ki of 800 nM against MCL-1 and 1.82 mM against BCL-xL, and demonstrated an improved effect on the viability of the HL60 acute myeloid leukemia cell line relative to the parent carboxylic acid-containing dual inhibitor from which it was derived.

4.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568667

RESUMEN

Bromodomains (BD) are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation of several genes including protooncogene cellular myelocytomatosis (c-Myc). c-Myc is difficult to target directly by agents due to its disordered alpha helical protein structure and predominant nuclear localization. The epigenetic targeting of c-Myc by BD inhibitors is an attractive therapeutic strategy for prostate cancer (PC) associated with increased c-Myc upregulation with advancing disease. MT-1 is a bivalent BD inhibitor that is 100-fold more potent than the first-in-class BD inhibitor JQ1. MT-1 decreased cell viability and causes cell cycle arrest in G0/G1 phase in castration-sensitive and resistant PC cell lines in a dose-dependent fashion. The inhibition of c-Myc function by MT-1 was molecularly corroborated by the de-repression of Protein Kinase D1 (PrKD) and increased phosphorylation of PrKD substrate proteins: threonine 120, serine 11, and serine 216 amino acid residues in ß-Catenin, snail, and cell division cycle 25c (CDC25c) proteins, respectively. The treatment of 3D cell cultures derived from three unique clinically annotated heavily pretreated patient-derived PC xenografts (PDX) mice models with increasing doses of MT-1 demonstrated the lowest IC50 in tumors with c-Myc amplification and clinically resistant to Docetaxel, Cabazitaxel, Abiraterone, and Enzalutamide. An intraperitoneal injection of either MT-1 or in combination with 3jc48-3, an inhibitor of obligate heterodimerization with MYC-associated protein X (MAX), in mice implanted with orthotopic PC PDX, decreased tumor growth. This is the first pre-clinical study demonstrating potential utility of MT-1 in the treatment of PC with c-Myc dysregulation.

5.
Bioorg Med Chem Lett ; 86: 129220, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905966

RESUMEN

The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers involved in the regulation of gene transcription. Inhibitors of the BET proteins, in particular BRD4, have demonstrated anti-tumour activities and efficacies in clinical trials. Herein, we describe the discovery of potent and selective inhibitors of BRD4, and demonstrate that the lead compound CG13250 is orally bioavailable and efficacious in a mouse xenograft model of leukemia.


Asunto(s)
Leucemia , Factores de Transcripción , Ratones , Humanos , Animales , Proteínas Nucleares , Leucemia/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas de Ciclo Celular
6.
RSC Med Chem ; 14(1): 103-112, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760746

RESUMEN

The anti-apoptotic protein MCL-1, which is overexpressed in multiple cancers, is presently a focus for the development of targeted drugs in oncology. We previously discovered inhibitors of MCL-1 based on 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids ("1,6-THQs"). However, with the nitrogen atom constrained in the bicyclic ring, we were unable to modify the alkyl portion of the tertiary sulfonamide functionality. Moreover, the introduction of additional functional groups onto the benzene ring portion of the THQ bicycle would not be trivial. Therefore, we elected to deconstruct the piperidine-type ring of the 6-carboxy-THQ lead to create a new 4-aminobenzoic acid scaffold. Given its simplicity, this permitted us to introduce diversity at the sulfonamide nitrogen, as well as vary the positions and substituents of the benzene ring. One of our most potent MCL-1 inhibitors, 6e-OH, exhibited a K i of 0.778 µM. Heteronuclear single quantum coherence experiments suggested 6e-OH bound in the canonical BH3-binding groove, with significant perturbations of R263, which forms a salt bridge with MCL-1's pro-apoptotic binding partners, as well as residues in the p2 pocket. Selectivity studies indicated that our compounds are dual inhibitors of MCL-1 and BCL-xL, with 17cd the most potent dual inhibitor: K i = 0.629 µM (MCL-1), 1.67 µM (BCL-xL). Whilst selective inhibitors may be more desirable in certain instances, polypharmacological agents whose additional target(s) address other pathways associated with the disease state, or serve to counter resistance mechanisms to the primary target, may prove particularly effective therapeutics. Since selective MCL-1 inhibition may be thwarted by overexpression of sister anti-apoptotic proteins, including BCL-xL and BCL-2, we believe our work lays a solid foundation towards the development of multi-targeting anti-cancer drugs.

7.
ACS Pharmacol Transl Sci ; 5(11): 1128-1141, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36407956

RESUMEN

Histone deacetylase inhibitors (HDACi) induce potent anti-inflammatory responses when used to treat inflammatory diseases. Suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, decreases pro-inflammatory cytokine levels and attenuates cytokine storm in sepsis; however, its toxicity profile toward immune cells has limited its use as a sepsis therapeutic. Here, we developed a modification to SAHA by para-hydroxymethylating the capping group to generate SAHA-OH. We discovered that SAHA-OH provides a favorable improvement to the toxicity profile compared to SAHA. SAHA-OH significantly reduced primary macrophage apoptosis and splenic B cell death as well as mitigated organ damage using a lipopolysaccharide (LPS)-induced endotoxemia mouse model. Furthermore, SAHA-OH retained anti-inflammatory responses similar to SAHA as measured by reductions in LPS-induced proinflammatory cytokine secretions in vitro and in vivo. These effects were attributed to a decreased selectivity of HDAC1, 2, 3, 8 and an increased selectivity for HDAC6 for SAHA-OH as determined by IC50 values. Our results support the potential for SAHA-OH to modulate acute proinflammatory responses while mitigating SAHA-associated drug toxicity for use in the treatment of inflammation-associated diseases and conditions.

8.
Drug Dev Res ; 83(8): 1879-1889, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36281026

RESUMEN

MCL-1 is a member of the BCL-2 family of proteins that regulates the mitochondrial pathway of apoptosis. Overexpression of MCL-1 is associated with the development and progression of a range of human cancers, and is also responsible for the onset of resistance to conventional chemotherapies. Although several MCL-1 inhibitors have now advanced to clinical trials, recent suspensions and terminations reveal the urgency with which new inhibitor chemotypes must be discovered. Building on our previous studies of a chiral, isomeric lead, we report the discovery of a new chemotype to inhibit MCL-1: 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acid. The nature of the sulfonyl moiety contributed significantly to the resulting inhibitory ability. For example, transforming a phenylsulfonyl group into a 4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl moiety elicited more than a 73-fold enhancement in inhibiton of MCL-1, possibly through targeting the p2 pocket in the BH3-binding groove, and so it is anticipated that further structure-activity studies here will lead to continued improvements in binding. It should be underscored that this class of MCL-1 inhibitors is readily accessible in four simple steps, is achiral and offers many avenues for optimization, all factors that are welcomed in the search for safe and effective inhibitors of this driver of cancer cell survival.


Asunto(s)
Antineoplásicos , Ácidos Carboxílicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Quinolinas , Humanos , Antineoplásicos/farmacología , Apoptosis , Ácidos Carboxílicos/farmacología , Línea Celular Tumoral , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias , Quinolinas/farmacología
9.
RSC Med Chem ; 13(8): 921-928, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092144

RESUMEN

Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.

10.
RSC Med Chem ; 13(8): 963-969, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092148

RESUMEN

Overexpression of the anti-apoptotic BCL-2 proteins is associated with the development and progression of a range of cancers. Venetoclax, an FDA-approved BCL-2 inhibitor, is fast becoming the standard-of-care for acute myeloid leukemia and chronic lymphocytic leukemia. However, the median survival offered by venetoclax is only 18 months (as part of a combination therapy regimen), and one of the primary culprits for this is the concomitant upregulation of sister anti-apoptotic proteins, in particular MCL-1 (and BCL-xL), which provides an escape route that manifests as venetoclax resistance. Since inhibition of BCL-xL leads to thrombocytopenia, we believe that a dual MCL-1/BCL-2 inhibitor may provide an enhanced therapeutic effect relative to a selective BCL-2 inhibitor. Beginning with a carboxylic acid-containing literature compound that is a potent inhibitor of MCL-1 and a moderate inhibitor of BCL-2, we herein describe our efforts to develop dual inhibitors of MCL-1 and BCL-2 by scaffold hopping from an indole core to an indazole framework. Subsequently, further elaboration of our novel N2-substituted, indazole-3-carboxylic acid lead into a family of indazole-3-acylsulfonamides resulted in improved inhibition of both MCL-1 and BCL-2, possibly through occupation of the p4 pocket, with minimal or no inhibition of BCL-xL.

11.
Cancer Gene Ther ; 29(11): 1550-1557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35440696

RESUMEN

The proto-oncogene cellular myelocytomatosis (c-Myc) is a transcription factor that is upregulated in several human cancers. Therapeutic targeting of c-Myc remains a challenge because of a disordered protein tertiary structure. The basic helical structure and zipper protein of c-Myc forms an obligate heterodimer with its partner MYC-associated factor X (MAX) to function as a transcription factor. An attractive strategy is to inhibit MYC/MAX dimerization to decrease c-Myc transcriptional function. Several methods have been described to inhibit MYC/MAX dimerization including small molecular inhibitors and proteomimetics. We studied the effect of a second-generation small molecular inhibitor 3JC48-3 on prostate cancer growth and viability. In our experimental studies, we found 3JC48-3 decreases prostate cancer cells' growth and viability in a dose-dependent fashion in vitro. We confirmed inhibition of MYC/MAX dimerization by 3JC48-3 using immunoprecipitation experiments. We have previously shown that the MYC/MAX heterodimer is a transcriptional repressor of a novel kinase protein kinase D1 (PrKD1). Treatment with 3JC48-3 upregulated PrKD1 expression and phosphorylation of known PrKD1 substrates: the threonine 120 (Thr-120) residue in beta-catenin and the serine 216 (Ser-216) in Cell Division Cycle 25 (CDC25C). The mining of gene expression in human metastatic prostate cancer samples demonstrated an inverse correlation between PrKD1 and c-Myc expression. Normal mice and mice with patient-derived prostate cancer xenografts (PDX) tolerated intraperitoneal injections of 3JC48-3 up to 100 mg/kg body weight without dose-limiting toxicity. Preliminary results in these PDX mouse models suggest that 3JC48-3 may be effective in decreasing the rate of tumor growth. In conclusion, our study demonstrates that 3JC48-3 is a potent MYC/MAX heterodimerization inhibitor that decreases prostate cancer growth and viability associated with upregulation of PrKD1 expression and kinase activity.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-myc , Humanos , Masculino , Ratones , Animales , Dimerización , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Factores de Transcripción/metabolismo , Ácidos Carboxílicos
12.
Blood ; 140(4): 359-373, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35436326

RESUMEN

Although Ras/mitogen-activated protein kinase (MAPK) signaling is activated in most human cancers, attempts to target this pathway using kinase-active site inhibitors have not typically led to durable clinical benefit. To address this shortcoming, we sought to test the feasibility of an alternative targeting strategy, focused on the ERK2 substrate binding domains, D and DEF binding pocket (DBP). Disabling the ERK2-DBP domain in mice caused baseline erythrocytosis. Consequently, we investigated the role of the ERK2-D and -DBP domains in disease, using a JAK2-dependent model of polycythemia vera (PV). Of note, inactivation of the ERK2-DBP domain promoted the progression of disease from PV to myelofibrosis, suggesting that the ERK2-DBP domain normally opposes progression. ERK2-DBP inactivation also prevented oncogenic JAK2 kinase (JAK2V617F) from promoting oncogene-induced senescence in vitro. The ERK2-DBP mutation attenuated JAK2-mediated oncogene-induced senescence by preventing the physical interaction of ERK2 with the transcription factor Egr1. Because inactivation of the ERK2-DBP created a functional ERK2 kinase limited to binding substrates through its D domain, these data suggested that the D domain substrates were responsible for promoting oncogene-induced progenitor growth and tumor progression and that pharmacologic targeting of the ERK2-D domain may attenuate cancer cell growth. Indeed, pharmacologic agents targeting the ERK2-D domain were effective in attenuating the growth of JAK2-dependent myeloproliferative neoplasm cell lines. Taken together, these data indicate that the ERK-D and -DBP domains can play distinct roles in the progression of neoplasms and that the D domain has the potential to be a potent therapeutic target in Ras/MAPK-dependent cancers.


Asunto(s)
Janus Quinasa 2 , Policitemia Vera , Animales , Línea Celular , Humanos , Janus Quinasa 2/genética , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Quinasas Activadas por Mitógenos , Fosforilación , Transducción de Señal
13.
Nat Commun ; 13(1): 2199, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459274

RESUMEN

Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious. Here we report MicroMator, an open and flexible software for defining and driving reactive microscopy experiments. It provides a Python software environment and an extensible set of modules that greatly facilitate the definition of events with triggers and effects interacting with the experiment. We provide a pedagogic example performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate MicroMator's potential via two challenging case studies in yeast to single-cell control and single-cell recombination, both requiring real-time tracking and light targeting at the single-cell level.


Asunto(s)
Microscopía , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Saccharomyces cerevisiae
14.
Theranostics ; 11(16): 7735-7754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335961

RESUMEN

Rationale: Multiple myeloma (MM) is a multifocal malignancy of bone marrow plasma cells, characterized by vicious cycles of remission and relapse that eventually culminate in death. The disease remains mostly incurable largely due to the complex interactions between the bone microenvironment (BME) and MM cells (MMC). In the "vicious cycle" of bone disease, abnormal activation of osteoclasts (OCs) by MMC causes severe osteolysis, promotes immune evasion, and stimulates the growth of MMC. Disrupting these cancer-stroma interactions would enhance treatment response. Methods: To disrupt this cycle, we orthogonally targeted nanomicelles (NM) loaded with non-therapeutic doses of a photosensitizer, titanocene (TC), to VLA-4 (α4ß1, CD49d/CD29) expressing MMC (MM1.S) and αvß3 (CD51/CD61) expressing OC. Concurrently, a non-lethal dose of a radiopharmaceutical, 18F-fluorodeoxyglucose ([18F]FDG) administered systemically interacted with TC (radionuclide stimulated therapy, RaST) to generate cytotoxic reactive oxygen species (ROS). The in vitro and in vivo effects of RaST were characterized in MM1.S cell line, as well as in xenograft and isograft MM animal models. Results: Our data revealed that RaST induced non-enzymatic hydroperoxidation of cellular lipids culminating in mitochondrial dysfunction, DNA fragmentation, and caspase-dependent apoptosis of MMC using VLA-4 avid TC-NMs. RaST upregulated the expression of BAX, Bcl-2, and p53, highlighting the induction of apoptosis via the BAK-independent pathway. The enhancement of multicopper oxidase enzyme F5 expression, which inhibits lipid hydroperoxidation and Fenton reaction, was not sufficient to overcome RaST-induced increase in the accumulation of irreversible function-perturbing α,ß-aldehydes that exerted significant and long-lasting damage to both DNA and proteins. In vivo, either VLA-4-TC-NM or αvß3-TC-NMs RaST induced a significant therapeutic effect on immunocompromised but not immunocompetent MM-bearing mouse models. Combined treatment with both VLA-4-TC-NM and αvß3-TC-NMs synergistically inhibited osteolysis, reduced tumor burden, and prevented rapid relapse in both in vivo models of MM. Conclusions: By targeting MM and bone cells simultaneously, combination RaST suppressed MM disease progression through a multi-prong action on the vicious cycle of bone cancer. Instead of using the standard multidrug approach, our work reveals a unique photophysical treatment paradigm that uses nontoxic doses of a single light-sensitive drug directed orthogonally to cancer and bone cells, followed by radionuclide-stimulated generation of ROS to inhibit tumor progression and minimize osteolysis in both immunocompetent murine and immunocompromised human MM models.


Asunto(s)
Mieloma Múltiple/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Osteoclastos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/metabolismo , Neoplasias Óseas , Huesos/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Fluorodesoxiglucosa F18/farmacología , Humanos , Cadenas alfa de Integrinas/efectos de los fármacos , Cadenas alfa de Integrinas/metabolismo , Ratones , Mieloma Múltiple/metabolismo , Compuestos Organometálicos/metabolismo , Osteoclastos/efectos de los fármacos , Osteólisis/patología , Radioisótopos/farmacología , Radiofármacos/uso terapéutico , Especies Reactivas de Oxígeno , Transducción de Señal/efectos de los fármacos , Nanomedicina Teranóstica/métodos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Pulm Pharmacol Ther ; 70: 102057, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425215

RESUMEN

Pulmonary fibrosis is a progressive disease with poor prognosis and limited therapeutic options. In this study, we evaluated the potential therapeutic effects of CG223, a novel inhibitor of bromodomain and extra-terminal motif (BET) proteins, on pulmonary fibrosis by focusing on the transforming growth factor-ß1 (TGF-ß1) pathway. In a murine model of bleomycin-induced pulmonary fibrosis, CG223 attenuated fibrosis while reducing the infiltration of inflammatory cells into the lungs. Fibroblasts expressing BRD4, a member of the BET protein family, were enriched in the tissue regions corresponding to bleomycin-induced fibrotic lesions. Additionally, pulmonary fibroblasts isolated from bleomycin-instilled mice showed a significantly increased association of BRD4 with the promoters of two pro-fibrotic genes linked to the entry into the TGF-ß1 autocrine/paracrine loop, thrombospondin 1 (Thbs1) and integrin ß3 (Itgb3), as well as with the promoter of a myofibroblast marker gene, actin alpha 2 (Acta2). Subsequent in vitro studies with murine primary lung fibroblasts showed that the mRNA induction of Thbs1, Itgb3, and Acta2 by TGF-ß1 can be inhibited by CG223 in a dose-dependent manner. Taken together, CG223-induced BRD4 inhibition suppressed lung fibrogenesis by affecting multiple genes, including those involved in the triggering of the TGF-ß1 autocrine/paracrine loop.


Asunto(s)
Bleomicina , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Fibroblastos , Pulmón , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Factores de Transcripción , Factor de Crecimiento Transformador beta1/genética
16.
RSC Med Chem ; 12(2): 178-196, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046608

RESUMEN

Multi-factorial diseases are illnesses that exploit multiple cellular processes, or stages within one process, and thus highly targeted therapies often succumb to the disease, losing efficacy as resistance sets in. Combination therapies have become a mainstay to battle these diseases, however these regimens are plagued with caveats. An emerging avenue to treat multi-factorial diseases is polypharmacology, wherein a single drug is rationally designed to bind multiple targets, and is widely touted to be superior to combination therapy by inherently addressing the latter's shortcomings, which include poor patient compliance, narrow therapeutic windows and spiraling healthcare costs. Through its roles in intracellular trafficking, cell motility, mitosis, protein folding and as a back-up to the proteasome pathway, HDAC6 has rapidly become an exciting new target for therapeutics, particularly in the discovery of new drugs to treat Alzheimer's disease and cancer. Herein, we describe recent efforts to marry together HDAC pharmacophores, with a particular emphasis on HDAC6 selectivity, with those of other targets towards the discovery of potent therapeutics to treat these evasive diseases. Such polypharmacological agents may supercede combination therapies through inherent synergism, permitting reduced dosing, wider therapeutic windows and improved compliance.

17.
J Pharmacol Exp Ther ; 376(1): 84-97, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33109619

RESUMEN

Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.


Asunto(s)
Antineoplásicos/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo , Antineoplásicos/farmacología , Dominio Catalítico , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Células Jurkat , Proteína Quinasa 1 Activada por Mitógenos/química , Unión Proteica , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/genética
18.
Laryngoscope ; 131(7): 1647-1651, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33300625

RESUMEN

OBJECTIVES/HYPOTHESIS: The anatomy of children with severe Pierre Robin sequence can present a challenge for direct laryngoscopy and intubation. Advanced techniques including flexible fiberoptic laryngoscopic intubation have been described but require highly specialized skill and equipment. Rigid video laryngoscopy is more accessible but has not been described in this population. STUDY DESIGN: Retrospective cohort study. METHODS: A retrospective review was completed at a tertiary care center of all children between January 2016 and March 2020 with Pierre Robin sequence who underwent a mandibular distraction osteogenesis procedure. Intubation events were collected, and a descriptive analysis was performed. A univariate logistic regression model was applied to direct laryngoscopy and flexible fiberoptic laryngoscopy with rigid video laryngoscopy as a reference. RESULTS: Twenty-five patients were identified with a total of 56 endotracheal events. All patients were successfully intubated. Direct laryngoscopy was successful at first intubation attempt in 47.3% (9/19) of events. Six direct laryngoscopy events required switching to another device. Rigid video laryngoscopy was successful at first intubation attempt in 80.5% (29/36) of events. Two cases required switching to another device. Flexible fiberoptic laryngoscopy was found successful at first intubation attempt in 88.9% (8/9) of events. Direct laryngoscopy was 4 times more likely to fail first intubation attempt when compared to rigid video laryngoscopy (P < .05). There was no significant difference between rigid video laryngoscopy and flexible fiberoptic laryngoscopy for intubation. CONCLUSIONS: For children with Pierre Robin sequence rigid video laryngoscopy should be considered as a first attempt intubation device both in the operating room and for emergent situations. LEVEL OF EVIDENCE: 4 Laryngoscope, 131:1647-1651, 2021.


Asunto(s)
Obstrucción de las Vías Aéreas/cirugía , Intubación Intratraqueal/métodos , Laringoscopía/métodos , Síndrome de Pierre Robin/complicaciones , Adolescente , Obstrucción de las Vías Aéreas/etiología , Niño , Preescolar , Falla de Equipo , Femenino , Humanos , Lactante , Recién Nacido , Intubación Intratraqueal/instrumentación , Laringoscopios , Laringoscopía/instrumentación , Masculino , Mandíbula/anomalías , Mandíbula/cirugía , Osteogénesis por Distracción , Síndrome de Pierre Robin/diagnóstico , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
19.
Clin Cancer Res ; 27(7): 1974-1986, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33355244

RESUMEN

PURPOSE: In multiple myeloma, drug-resistant cells underlie relapse or progression following chemotherapy. Cell adhesion-mediated drug resistance (CAM-DR) is an established mechanism used by myeloma cells (MMC) to survive chemotherapy and its markers are upregulated in residual disease. The integrin very late antigen 4 (VLA4; α4ß1) is a key mediator of CAM-DR and its expression affects drug sensitivity of MMCs. Rather than trying to inhibit its function, here, we hypothesized that upregulation of VLA4 by resistant MMCs could be exploited for targeted delivery of drugs, which would improve safety and efficacy of treatments. EXPERIMENTAL DESIGN: We synthetized 20 nm VLA4-targeted micellar nanoparticles (V-NP) carrying DiI for tracing or a novel camptothecin prodrug (V-CP). Human or murine MMCs, alone or with stroma, and immunocompetent mice with orthotopic multiple myeloma were used to track delivery of NPs and response to treatments. RESULTS: V-NPs selectively delivered their payload to MMCs in vitro and in vivo, and chemotherapy increased their uptake by surviving MMCs. V-CP, alone or in combination with melphalan, was well tolerated and prolonged survival in myeloma-bearing mice. V-CP also reduced the dose requirement for melphalan, reducing tumor burden in association with suboptimal dosing without increasing overall toxicity. CONCLUSIONS: V-CP may be a safe and effective strategy to prevent or treat relapsing or refractory myeloma. V-NP targeting of resistant cells may suggest a new approach to environment-induced resistance in cancer.


Asunto(s)
Integrina alfa4beta1/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Nanopartículas/metabolismo , Animales , Camptotecina/uso terapéutico , Adhesión Celular , Línea Celular Tumoral , Dexametasona/farmacología , Resistencia a Antineoplásicos , Humanos , Melfalán/farmacología , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/mortalidad , Inhibidores de Topoisomerasa I/uso terapéutico
20.
Theranostics ; 10(17): 7510-7526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685002

RESUMEN

Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin ß3, and in vivo targeting and therapeutic potential was evaluated using αvß3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvß3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvß3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvß3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin ß3 knock out tumors (PyMT-Bo1 ß3KO) were treated with αvß3-NP or αvß3-MI3-PD NP. M2 macrophages were significantly reduced with αvß3-MI3-PD nanoparticle therapy but not αvß3-NP treatment. Conclusion: These data suggest αvß3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Nanopartículas/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Antineoplásicos/química , Neoplasias de la Mama/patología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Línea Celular Tumoral/trasplante , Evaluación Preclínica de Medicamentos , Femenino , Fluorocarburos/administración & dosificación , Fluorocarburos/química , Técnicas de Inactivación de Genes , Humanos , Integrina alfaVbeta3 , Integrina beta3 , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Nanopartículas/química , Fagocitosis , Cultivo Primario de Células , Profármacos/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA