Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 10(3): eadi5791, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241368

RESUMEN

The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.


Asunto(s)
Queratinocitos , Tenascina , Tenascina/genética , Epidermis , Piel , Células de Merkel/fisiología , Folículo Piloso
2.
Methods Mol Biol ; 2736: 9-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37615890

RESUMEN

Cleavage Under Targets & Release Using Nuclease (CUT&RUN) has swiftly become the preferred procedure over the past few years for genomic mapping and detecting interactions between chromatin and its bound proteins. CUT&RUN is now being widely used for characterizing the epigenetic landscape in many cell types as it utilizes far less cell numbers when compared to Chromatin Immunoprecipitation-sequencing (ChIP-seq), thereby making it a powerful tool for researchers working with limited material. This protocol has been specifically optimized for detecting histone modifications in fluorescence-activated cell sorting (FACS)-isolated epidermal stem cells from adult mice.


Asunto(s)
Cromatina , Código de Histonas , Ratones , Animales , Procesamiento Proteico-Postraduccional , Células Madre , Epigenómica/métodos
3.
J Invest Dermatol ; 143(11): 2163-2176.e6, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37257637

RESUMEN

Whether Merkel cells regenerate in adult skin and from which progenitor cells they regenerate are a subject of debate. Understanding Merkel cell regeneration is of interest to the study of Merkel cell carcinoma, a rare neuroendocrine skin cancer hypothesized to originate in a Merkel cell progenitor transformed by Merkel cell polyomavirus small and large T antigens. We sought to understand what the adult Merkel cell progenitors are and whether they can give rise to Merkel cell carcinoma. We used lineage tracing to identify SOX9-expressing cells (SOX9+ cells) as Merkel cell progenitors in postnatal murine skin. Merkel cell regeneration from SOX9+ progenitors occurs rarely in mature skin unless in response to minor mechanical injury. Merkel cell polyomavirus small T antigen and functional imitation of large T antigen in SOX9+ cells enforced neuroendocrine and Merkel cell lineage reprogramming in a subset of cells. These results identify SOX9+ cells as postnatal Merkel cell progenitors that can be reprogrammed by Merkel cell polyomavirus T antigens to express neuroendocrine markers.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Poliomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Adulto , Humanos , Ratones , Animales , Carcinoma de Células de Merkel/patología , Células de Merkel , Antígenos Virales de Tumores , Neoplasias Cutáneas/patología
4.
PLoS Genet ; 17(12): e1009948, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34905545

RESUMEN

Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Cabello/crecimiento & desarrollo , Histonas/genética , Complejo Represivo Polycomb 2/genética , Regeneración/genética , Células Madre Adultas/metabolismo , Animales , Cromatina/genética , Cabello/metabolismo , Folículo Piloso/metabolismo , Humanos , Metilación , Ratones , RNA-Seq , Transducción de Señal/genética
5.
Genes (Basel) ; 12(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680880

RESUMEN

Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.


Asunto(s)
Epigénesis Genética/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Células Madre Adultas/citología , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Humanos
6.
Dev Cell ; 56(18): 2547-2561.e8, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34473941

RESUMEN

Ultraviolet (UV) radiation is a prime environmental stressor that our epidermis is exposed to on a daily basis. To avert UV-induced damage, epidermal stem cells (EpSCs) become pigmented via a process of heterotypic interaction between melanocytes and EpSCs; however, the molecular mechanisms of this interaction are not well understood. In this study, we show that the function of a key chromatin regulator, the Polycomb complex, was reduced upon UV exposure in human and mouse epidermis. Genetic ablation of key Polycomb subunits in murine EpSCs, mimicking depletion upon UV exposure, results in an increased number of epidermal melanocytes and subsequent epidermal pigmentation. Genome-wide transcriptional and chromatin studies show that Polycomb regulates the expression of UV-responsive genes and identifies type II collagen (COL2A1) as a critical secreted regulator of melanogenesis and epidermal pigmentation. Together, our findings show how UV exposure induces Polycomb-mediated changes in EpSCs to affect melanocyte behavior and promote epidermal pigmentation.


Asunto(s)
Células Epidérmicas/citología , Epidermis/metabolismo , Melanocitos/metabolismo , Células Madre/citología , Animales , Células Cultivadas , Epidermis/patología , Queratinocitos/metabolismo , Ratones Transgénicos , Pigmentación/fisiología , Pigmentación de la Piel/fisiología , Rayos Ultravioleta/efectos adversos
7.
Development ; 147(22)2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33191273

RESUMEN

Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.


Asunto(s)
Células Epidérmicas/metabolismo , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Homeostasis/genética , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Autorrenovación de las Células/fisiología , Humanos , Transcripción Genética , Cicatrización de Heridas/fisiología
8.
Cell Rep ; 25(13): 3828-3843.e9, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590052

RESUMEN

Maternal mRNAs synthesized during oogenesis initiate the development of future generations. Some maternal mRNAs are either somatic or germline determinants and must be translationally repressed until embryogenesis. However, the translational repressors themselves are temporally regulated. We used polar granule component (pgc), a Drosophila maternal mRNA, to ask how maternal transcripts are repressed while the regulatory landscape is shifting. pgc, a germline determinant, is translationally regulated throughout oogenesis. We find that different conserved RNA-binding proteins bind a 10-nt sequence in the 3' UTR of pgc mRNA to continuously repress translation at different stages of oogenesis. Pumilio binds to this sequence in undifferentiated and early-differentiating oocytes to block Pgc translation. After differentiation, Bruno levels increase, allowing Bruno to bind the same sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs that are regulated similarly, including zelda, the activator of the zygotic genome.


Asunto(s)
Regiones no Traducidas 3'/genética , Secuencia Conservada/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero Almacenado/genética , Animales , Secuencia de Bases , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Oogénesis/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero Almacenado/metabolismo
9.
Dev Biol ; 434(1): 84-95, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29198563

RESUMEN

Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast "re-programs" it away from self-renewal and toward the gamete differentiation program.


Asunto(s)
Diferenciación Celular/fisiología , Fase G2/fisiología , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Células Madre/metabolismo , Animales , Ciclina B/biosíntesis , Ciclina B/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Germinativas/citología , Heterocromatina/genética , Heterocromatina/metabolismo , Células Madre/citología
10.
Results Probl Cell Differ ; 59: 1-30, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28247044

RESUMEN

During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.


Asunto(s)
Cromatina/genética , Drosophila/fisiología , Epigénesis Genética/fisiología , Oogénesis/fisiología , Óvulo/citología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Femenino
11.
PLoS Genet ; 12(3): e1005918, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27019121

RESUMEN

Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate.


Asunto(s)
Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Glicoproteínas/genética , Oogénesis/genética , Proteínas Wnt/genética , Animales , Cromatina/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Glicoproteínas/biosíntesis , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Células Madre/metabolismo , Proteínas Wnt/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA