RESUMEN
The efficacy of antibody-drug conjugates (ADCs) targeted to solid tumors depends on biological processes that are hard to monitor in vivo. 89Zr-immunoPET of the ADC antibodies could help understand the performance of ADCs in the clinic by confirming the necessary penetration, binding, and internalization. This work studied monomethyl auristatin E (MMAE) ADCs against two targets in metastatic castration-resistant prostate cancer, TENB2 and STEAP1, in four patient-derived tumor models (LuCaP35V, LuCaP70, LuCaP77, LuCaP96.1). Three aspects of ADC biology were measured and compared: efficacy was measured in tumor growth inhibition studies; target expression was measured by immunohistochemistry and flow cytometry; and tumor antibody uptake was measured with 111In-mAbs and gamma counting or with 89Zr-immunoPET. Within each model, the mAb with the highest tumor uptake showed the greatest potency as an ADC. Sensitivity between models varied, with the LuCaP77 model showing weak efficacy despite high target expression and high antibody uptake. Ex vivo analysis confirmed the in vivo results, showing a correlation between expression, uptake and ADC efficacy. We conclude that 89Zr-immunoPET data can demonstrate which ADC candidates achieve the penetration, binding, and internalization necessary for efficacy in tumors sensitive to the toxic payload.
Asunto(s)
Inmunoconjugados/farmacología , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Anticuerpos Monoclonales/farmacología , Antígenos de Neoplasias , Antineoplásicos/farmacología , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Oligopéptidos/farmacología , Oxidorreductasas/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Radioisótopos , Ensayos Antitumor por Modelo de Xenoinjerto , CirconioRESUMEN
UNLABELLED: An immunoPET imaging probe for the detection of phosphatidylserine was developed and tested in animal models of human cancer treated with pro-apoptotic therapy. We hypothesized that the relatively long plasma half-life of a probe based on a full-length antibody coupled with a residualizing radionuclide would be able to catch the wave of drug-induced apoptosis and lead to a specific accumulation in apoptotic tumor tissue. METHODS: The imaging probe is based on a 89Zr-labeled monoclonal antibody PGN635 targeting phosphatidylserine. The probe was evaluated pre-clinically in four tumor xenograft models: one studied treatment with paclitaxel to trigger the intrinsic apoptotic pathway, and three others interrogated treatment with an agonistic death-receptor monoclonal antibody to engage the extrinsic apoptotic pathway. RESULTS: High accumulation of 89Zr-PGN635 was observed in treated tumors undergoing apoptosis reaching 30 %ID/g and tumor-to-blood ratios up to 13. The tumor uptake in control groups treated with vehicle or imaged with a non-binding antibody probe was significantly lower. CONCLUSIONS: The results demonstrate the ability of 89Zr-PGN635 to image drug-induced apoptosis in animal models and corroborate our hypothesis that radiolabeled antibodies binding to intracellular targets transiently exposed on the cell surface during apoptosis can be employed for detection of tumor response to therapy.
Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Fosfatidilserinas/inmunología , Fosfatidilserinas/metabolismo , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Circonio , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Humanos , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/patologíaRESUMEN
Limitations to the application of molecularly targeted cancer therapies are the inability to accurately match patient with effective treatment and the absence of a prompt readout of posttreatment response. Noninvasive agents that rapidly report vascular endothelial growth factor (VEGF) levels using positron emission tomography (PET) have the potential to enhance anti-angiogenesis therapies. Using phage display, two distinct classes of peptides were identified that bind to VEGF with nanomolar affinity and high selectivity. Co-crystal structures of these different peptide classes demonstrate that both bind to the receptor-binding region of VEGF. (18)F-radiolabelling of these peptides facilitated the acquisition of PET images of tumor VEGF levels in a HM7 xenograph model. The images obtained from one 59-residue probe, (18)F-Z-3B, 2 hr postinjection are comparable to those obtained with anti-VEGF antibody B20 72 hr postinjection. Furthermore, VEGF levels in growing SKOV3 tumors were followed using (18)F-Z-3B as a PET probe with VEGF levels increasing with tumor size.
Asunto(s)
Neoplasias/diagnóstico por imagen , Péptidos/química , Péptidos/metabolismo , Tomografía de Emisión de Positrones/métodos , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Química Clic , Cristalografía por Rayos X , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/metabolismo , Biblioteca de Péptidos , Péptidos/síntesis química , Unión Proteica , Multimerización de Proteína , Factor A de Crecimiento Endotelial Vascular/químicaRESUMEN
UNLABELLED: Three thiol reactive reagents were developed for the chemoselective conjugation of desferrioxamine (Df) to a monoclonal antibody via engineered cysteine residues (thio-trastuzumab). The in vitro stability and in vivo imaging properties of site-specifically radiolabeled (89)Zr-Df-thio-trastuzumab conjugates were investigated. METHODS: The amino group of desferrioxamine B was acylated by bromoacetyl bromide, N-hydroxysuccinimidyl iodoacetate, or N-hydroxysuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate to obtain thiol reactive reagents bromoacetyl-desferrioxamine (Df-Bac), iodoacetyl-desferrioxamine (Df-Iac) and maleimidocyclohexyl-desferrioxamine (Df-Chx-Mal), respectively. Df-Bac and Df-Iac alkylated the free thiol groups of thio-trastuzumab by nucleophilic substitution forming Df-Ac-thio-trastuzumab, while the maleimide reagent Df-Chx-Mal reacted via Michael addition to provide Df-Chx-Mal-thio-trastuzumab. The conjugates were radiolabeled with (89)Zr and evaluated for serum stability, and their positron emission tomography (PET) imaging properties were investigated in a BT474M1 (HER2-positive) breast tumor mouse model. RESULTS: The chemoselective reagents were obtained in 14% (Df-Bac), 53% (Df-Iac) and 45% (Df-Chx-Mal) yields. Site-specific conjugation of Df-Chx-Mal to thio-trastuzumab was complete within 1 h at pH 7.5, while Df-Iac and Df-Bac respectively required 2 and 5 h at pH 9. Each Df modified thio-trastuzumab was chelated with (89)Zr in yields exceeding 75%. (89)Zr-Df-Ac-thio-trastuzumab and (89)Zr-Df-Chx-Mal-thio-trastuzumab were stable in mouse serum and exhibited comparable PET imaging capabilities in a BT474M1 (HER2-positive) breast cancer model reaching 20-25 %ID/g of tumor uptake and a tumor to blood ratio of 6.1-7.1. CONCLUSIONS: The new reagents demonstrated good reactivity with engineered thiol groups of trastuzumab and very good chelation properties with (89)Zr. The site-specifically (89)Zr-labeled thio-antibodies were stable in serum and showed PET imaging properties comparable to lysine conjugates.
Asunto(s)
Anticuerpos Monoclonales , Neoplasias de la Mama/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioinmunodetección/métodos , Radioisótopos , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Especificidad de Órganos , Radioisótopos/inmunología , Radiofármacos/síntesis química , Radiofármacos/inmunología , Distribución Tisular , Circonio/inmunologíaRESUMEN
Receptor-specific proteins produced by genetic engineering are attractive as PET imaging agents, but labeling with conventional (18)F-based prosthetic groups is problematic due to long synthesis times, poor radiochemical yields, and low specific activities. Therefore, we developed a modular platform for the rapid preparation of water-soluble prosthetic groups capable of efficiently introducing (18)F into proteins. The utility of this platform is demonstrated by the thiol-specific prosthetic group, [(18)F]FPEGMA, which was used to produce site-specifically (18)F-labeled protein ((18)F-trastuzumab-ThioFab) in 82 min with a total radiochemical yield of 13 +/- 3% and a specific activity of 2.2 +/- 0.2 Ci/micromol. (18)F-trastuzumab-ThioFab retained the biological activity of native protein and was successfully validated in vivo with microPET imaging of Her2 expression in a xenograft tumor-bearing murine model modulated by the Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin.
Asunto(s)
Receptores ErbB/análisis , Radioisótopos de Flúor , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/análisis , Animales , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Benzoquinonas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Lactamas Macrocíclicas , Ratones , Neoplasias Experimentales/diagnóstico , Ingeniería de Proteínas , Proteínas/química , Trasplante Heterólogo , TrastuzumabRESUMEN
UNLABELLED: Imaging of the glial activation that occurs in response to central nervous system trauma and inflammation could become a powerful technique for the assessment of several neuropathologies. The selective uptake and metabolism of 2-(18)F-fluoroacetate ((18)F-FAC) in glia may represent an attractive strategy for imaging glial metabolism. METHODS: We have evaluated the use of (18)F-FAC as a specific PET tracer of glial cell metabolism in rodent models of glioblastoma, stroke, and ischemia-hypoxia. RESULTS: Enhanced uptake of (18)F-FAC was observed (6.98 +/- 0.43 percentage injected dose per gram [%ID/g]; tumor-to-normal ratio, 1.40) in orthotopic U87 xenografts, compared with healthy brain tissue. The lesion extent determined by (18)F-FAC PET correlated with that determined by MRI (R(2) = 0.934, P = 0.007). After transient middle cerebral artery occlusion in the rat brain, elevated uptake of (18)F-FAC (1.00 +/- 0.03 %ID/g; lesion-to-normal ratio, 1.90) depicted the ischemic territory and correlated with infarct volumes as determined by 2,3,5-triphenyltetrazolium chloride staining (R(2) = 0.692, P = 0.010) and with the presence of activated astrocytes detected by anti-glial fibrillary acidic protein. Ischemia-hypoxia, induced by permanent ligation of the common carotid artery with transient hypoxia, resulted in persistent elevation of (18)F-FAC uptake within 30 min of the induction of hypoxia. CONCLUSION: Our data support the further evaluation of (18)F-FAC PET for the assessment of glial cell metabolism associated with neuroinflammation.
Asunto(s)
Radioisótopos de Flúor , Fluoroacetatos , Neuroglía/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Animales , Isquemia Encefálica/metabolismo , Fluorodesoxiglucosa F18 , Glioblastoma/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas WistarRESUMEN
PURPOSE: We sought to identify an anesthetic regime that, unlike isoflurane in air, would maintain glucose homeostasis in mice undergoing Positron emission tomography (PET) imaging with 2-deoxy-2-[18F]fluoro-D: -glucose (FDG). MATERIALS AND METHODS: FDG uptake was also measured in normal and tumor tissues. Athymic and Balb/c nude mice were studied. Blood glucose levels were measured before and after 30 min of FDG PET imaging under isoflurane or sevoflurane carried in air or oxygen. FDG uptake was quantified as a percentage of the injected dose and using Patlak analysis yielding Ki values. RESULTS: Blood glucose levels were more stable under sevoflurane than under isoflurane, especially in the athymic nude mice. Under isoflurane, FDG uptake into myocardium was higher than under sevoflurane and was strongly correlated with the intrascan change in blood glucose. CONCLUSION: Sevoflurane should be preferred for physiologic imaging in mice, minimizing changes in glucose and, for FDG PET, reducing signal spillover from the myocardium.
Asunto(s)
Anestésicos por Inhalación/farmacología , Fluorodesoxiglucosa F18/farmacocinética , Gases/farmacología , Tomografía Computarizada de Emisión , Aire , Animales , Glucemia/análisis , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias del Colon/patología , Femenino , Células HCT116 , Humanos , Isoflurano/farmacología , Masculino , Éteres Metílicos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxígeno/farmacología , Neoplasias de la Próstata/patología , Radiofármacos/farmacocinética , Sevoflurano , Distribución Tisular , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.