Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Adv Sci (Weinh) ; 11(21): e2401070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526150

RESUMEN

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

2.
Adv Mater ; 36(12): e2211302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36897806

RESUMEN

The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.

3.
Small ; 20(15): e2307034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009507

RESUMEN

The origin of the glass transition is still an open debate, especially for the new class of glasses, formed from metal-organic compounds. High-temperature in situ 2H Nuclear Magnetic Resonance (NMR) experiments are performed on deuterated samples of ZIF-62 (Zn(C3H4N2)2-x(C7H6N2)x, with x = 0.25 and x = 0.05), the prototypical metal-organic framework glass former. Using lineshape analysis, frequencies and angular amplitudes of oscillations of the imidazolate ring during heating up to the melt progressively increasing from ≈10 to 150 MHz, and from ≈5° to 25° are found. This behavior is compositionally dependent and points to the origin of the glass transition lying in organic linker movement, in a similar vein to that witnessed in some organics and contrary to the purely inorganic-based view of Metal-Organic Framework (MOF) glasses taken to date. This experimental approach shows the potential to elucidate the melting and/or decomposition process for a wide range of MOFs.

4.
JACS Au ; 3(11): 3111-3126, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034972

RESUMEN

CaO-based sorbents are cost-efficient materials for high-temperature CO2 capture, yet they rapidly deactivate over carbonation-regeneration cycles due to sintering, hindering their utilization at the industrial scale. Morphological stabilizers such as Al2O3 or SiO2 (e.g., introduced via impregnation) can improve sintering resistance, but the sorbents still deactivate through the formation of mixed oxide phases and phase segregation, rendering the stabilization inefficient. Here, we introduce a strategy to mitigate these deactivation mechanisms by applying (Al,Si)Ox overcoats via atomic layer deposition onto CaCO3 nanoparticles and benchmark the CO2 uptake of the resulting sorbent after 10 carbonation-regeneration cycles against sorbents with optimized overcoats of only alumina/silica (+25%) and unstabilized CaCO3 nanoparticles (+55%). 27Al and 29Si NMR studies reveal that the improved CO2 uptake and structural stability of sorbents with (Al,Si)Ox overcoats is linked to the formation of glassy calcium aluminosilicate phases (Ca,Al,Si)Ox that prevent sintering and phase segregation, probably due to a slower self-diffusion of cations in the glassy phases, reducing in turn the formation of CO2 capture-inactive Ca-containing mixed oxides. This strategy provides a roadmap for the design of more efficient CaO-based sorbents using glassy stabilizers.

5.
Chem Mater ; 35(18): 7475-7490, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780414

RESUMEN

Gallia-based shells with a thickness varying from a submonolayer to ca. 2.5 nm were prepared by atomic layer deposition (ALD) using trimethylgallium, ozone, and partially dehydroxylated silica, followed by calcination at 500 °C. Insight into the atomic-scale structure of these shells was obtained by high-field 71Ga solid-state nuclear magnetic resonance (NMR) experiments and the modeling of X-ray differential pair distribution function data, complemented by Ga K-edge X-ray absorption spectroscopy and 29Si dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) studies. When applying one ALD cycle, the grown submonolayer contains mostly tetracoordinate Ga sites with Si atoms in the second coordination sphere ([4]Ga(Si)) and, according to 15N DNP SENS using pyridine as the probe molecule, both strong Lewis acid sites (LAS) and strong Brønsted acid sites (BAS), consistent with the formation of gallosilicate Ga-O-Si and Ga-µ2-OH-Si species. The shells obtained using five and ten ALD cycles display characteristics of amorphous gallia (GaOx), i.e., an increased relative fraction of pentacoordinate sites ([5]Ga(Ga)), the presence of mild LAS, and a decreased relative abundance of strong BAS. The prepared Ga1-, Ga5-, and Ga10-SiO2-500 materials catalyze the dehydrogenation of isobutane to isobutene, and their catalytic performance correlates with the relative abundance and strength of LAS and BAS, viz., Ga1-SiO2-500, a material with a higher relative fraction of strong LAS, is more active and stable compared to Ga5- and Ga10-SiO2-500. In contrast, related ALD-derived Al1-, Al5-, and Al10-SiO2-500 materials do not catalyze the dehydrogenation of isobutane and this correlates with the lack of strong LAS in these materials that instead feature abundant strong BAS formed via the atomic-scale mixing of Al sites with silica, leading to Al-µ2-OH-Si sites. Our results suggest that [4]Ga(Si) sites provide strong Lewis acidity and drive the dehydrogenation activity, while the appearance of [5]Ga(Ga) sites with mild Lewis activity is associated with catalyst deactivation through coking. Overall, the atomic-level insights into the structure of the GaOx-based materials prepared in this work provide a guide to design active Ga-based catalysts by a rational tailoring of Lewis and Brønsted acidity (nature, strength, and abundance).

6.
Commun Chem ; 6(1): 144, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414866

RESUMEN

Al-based cationic metal-organic frameworks (MOFs) are uncommon. Here, we report a cationic Al-MOF, MIP-213(Al) ([Al18(µ2-OH)24(OH2)12(mdip)6]6Cl·6H2O) constructed from flexible tetra-carboxylate ligand (5,5'-Methylenediisophthalic acid; H4mdip). Its crystal structure was determined by the combination of three-dimensional electron diffraction (3DED) and high-resolution powder X-ray diffraction. The structure is built from infinite corner-sharing chains of AlO4(OH)2 and AlO2(OH)3(H2O) octahedra forming an 18-membered rings honeycomb lattice, similar to that of MIL-96(Al), a scarce Al-polycarboxylate defective MOF. Despite sharing these structural similarities, MIP-213(Al), unlike MIL-96(Al), lacks the isolated µ3-oxo-bridged Al-clusters. This leads to an ordered defective cationic framework whose charge is balanced by Cl- sandwiched between two Al-trimers at the corner of the honeycomb, showing strong interaction with terminal H2O coordinated to the Al-trimers. The overall structure is endowed by a narrow quasi-1D channel of dimension ~4.7 Å. The Cl- in the framework restrains the accessibility of the channels, while the MOF selectively adsorbs CO2 over N2 and possesses high hydrolytic stability.

7.
Anaesth Crit Care Pain Med ; 42(5): 101232, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37054915

RESUMEN

INTRODUCTION: The prevalence and risk factors of anxiety and depression symptoms in relatives of moderate to severe traumatic brain injury (TBI) survivors have not been thoroughly investigated. METHODS: Ancillary study of a multicentric prospective randomized-controlled trial in nine university hospitals in 370 moderate-to-severe TBI patients. TBI survivor-relative dyads were included in the 6th month of follow-up. Relatives responded to the Hospital Anxiety and Depression Scale (HADS). The primary endpoints were the prevalence of severe symptoms of anxiety (HADS-Anxiety ≥ 11) and depression (HADS-Depression ≥ 11) in relatives. We explored the risk factors of severe anxiety and depression symptoms. RESULTS: Relatives were predominantly women (80.7%), spouse-husband (47.7%), or parents (39%). Out of the 171 dyads included, 83 (50.6%) and 59 (34.9%) relatives displayed severe symptoms of anxiety and depression, respectively. Severe anxiety symptoms in relatives were independently associated with the patient's discharge at home (OR 2.57, 95%CI [1.04-6.37]) and the patient's higher SF-36 Mental Health domain scores (OR 1.03 95%CI [1.01-1.05]). Severe depression symptoms were independently associated with a lower SF-36 Mental Health domain score (OR = 0.98 95%CI [0.96-1.00]). No ICU organization characteristics were associated with psychological symptoms in relatives. DISCUSSION: There is a high prevalence of anxiety and depression symptoms among relatives of moderate-to-severe TBI survivors at 6 months. Anxiety and depression were inversely correlated with the patient's mental health status at 6 months. CONCLUSIONS: Long-term follow-up must provide psychological care to relatives after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos por Estrés Postraumático , Humanos , Femenino , Masculino , Depresión/epidemiología , Depresión/psicología , Trastornos por Estrés Postraumático/epidemiología , Estudios Prospectivos , Ansiedad/epidemiología , Ansiedad/psicología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/epidemiología , Sobrevivientes/psicología
8.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837097

RESUMEN

The study of the provenance of dolomitic marble artefacts has become relevant since it was discovered that quarries of this marble other than that of Cape-Vathy located on the island of Thasos have been exploited since Antiquity. To improve our knowledge about the provenance of materials and the extent of their dispersion, multiple archaeometric studies were performed in the past including isotope analyses, petrography, cathodoluminescence, and elemental analyses. In the present work, solid-state nuclear magnetic resonance (NMR) spectroscopy has been added to this panel of techniques. NMR allows the characterization of the material at a molecular level by looking at different nuclei: carbon, magnesium, and calcium. Statistical analysis of the data collected on both quarry samples and archaeologic items was also implemented and clearly demonstrates the efficiency of a holistic approach for provenance elucidation. Finally, the first 25Mg NMR tests have shown the potential of this technique to discriminate between dolomitic marbles of different provenance. The results are discussed in terms of their historical meaning and illustrate the exploitation of sources of dolomitic marbles other than the Greek Thasos source.

10.
Catal Sci Technol ; 12(19): 5861-5868, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36324825

RESUMEN

Catalysts with well-defined isolated Ni(ii) surface sites have been prepared on three silica-based supports. The outer shells of the support were comprised either of an amorphous aluminosilicate or amorphous alumina (AlO x ) layer - associated with a high and low density of strong Brønsted acid sites (BAS), respectively. When tested for ethene-to-propene conversion, Ni catalysts with a higher density of strong BAS demonstrate a higher initial activity and productivity to propene. On all three catalysts, the propene productivity correlates closely with the concentration of C8 aromatics, suggesting that propene may form via a carbon-pool mechanism. While all three catalysts deactivate with time on stream, the deactivation of catalysts with Ni(ii) sites on AlO x , i.e., containing surface Ni aluminate sites, is shown to be reversible by calcination (coke removal), in contrast to the deactivation of surface Ni silicate or aluminosilicate sites, which deactivate irreversibly by forming Ni nanoparticles.

11.
Cells ; 10(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34685700

RESUMEN

At the early stages of life development, alveoli are colonized by embryonic macrophages, which become resident alveolar macrophages (ResAM) and self-sustain by local division. Genetic and epigenetic signatures and, to some extent, the functions of ResAM are dictated by the lung microenvironment, which uses cytokines, ligand-receptor interactions, and stroma cells to orchestrate lung homeostasis. In resting conditions, the lung microenvironment induces in ResAM a tolerogenic programming that prevents unnecessary and potentially harmful inflammation responses to the foreign bodies, which continuously challenge the airways. Throughout life, any episode of acute inflammation, pneumonia being likely the most frequent cause, depletes the pool of ResAM, leaving space for the recruitment of inflammatory monocytes that locally develop in monocyte-derived alveolar macrophages (InfAM). During lung infection, the local microenvironment induces a temporary inflammatory signature to the recruited InfAM to handle the tissue injury and eliminate the pathogens. After a few days, the recruited InfAM, which locally self-sustain and develop as new ResAM, gain profibrotic functions required for tissue healing. After the complete resolution of the infectious episode, the functional programming of both embryonic and monocyte-derived ResAM remains altered for months and possibly for the entire life. Adult lungs thus contain a wide diversity of ResAM since every infection brings new waves of InfAM which fill the room left open by the inflammatory process. The memory of these innate cells called trained immunity constitutes an immunologic scar left by inflammation, notably pneumonia. This memory of ResAM has advantages and drawbacks. In some cases, lung-trained immunity offers better defense capacities against autoimmune disorders and the long-term risk of infection. At the opposite, it can perpetuate a harmful process and lead to a pathological state, as is the case among critically ill patients who have immune paralysis and are highly susceptible to hospital-acquired pneumonia and acute respiratory distress syndrome. The progress in understanding the kinetics of response of alveolar macrophages (AM) to lung inflammation is paving the way to new treatments of pneumonia and lung inflammatory process.


Asunto(s)
Adaptación Fisiológica , Inflamación/patología , Macrófagos Alveolares/patología , Fibrosis , Homeostasis , Humanos , Infecciones/inmunología , Infecciones/patología , Inflamación/inmunología , Macrófagos Alveolares/inmunología
12.
Nat Commun ; 12(1): 5510, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535647

RESUMEN

Early transitional metal carbides are promising catalysts for hydrogenation of CO2. Here, a two-dimensional (2D) multilayered 2D-Mo2C material is prepared from Mo2CTx of the MXene family. Surface termination groups Tx (O, OH, and F) are reductively de-functionalized in Mo2CTx (500 °C, pure H2) avoiding the formation of a 3D carbide structure. CO2 hydrogenation studies show that the activity and product selectivity (CO, CH4, C2-C5 alkanes, methanol, and dimethyl ether) of Mo2CTx and 2D-Mo2C are controlled by the surface coverage of Tx groups that are tunable by the H2 pretreatment conditions. 2D-Mo2C contains no Tx groups and outperforms Mo2CTx, ß-Mo2C, or the industrial Cu-ZnO-Al2O3 catalyst in CO2 hydrogenation (evaluated by CO weight time yield at 430 °C and 1 bar). We show that the lack of surface termination groups drives the selectivity and activity of Mo-terminated carbidic surfaces in CO2 hydrogenation.

13.
JAMA ; 325(20): 2056-2066, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34032829

RESUMEN

Importance: Fluid therapy is an important component of care for patients with traumatic brain injury, but whether it modulates clinical outcomes remains unclear. Objective: To determine whether continuous infusion of hypertonic saline solution improves neurological outcome at 6 months in patients with traumatic brain injury. Design, Setting, and Participants: Multicenter randomized clinical trial conducted in 9 intensive care units in France, including 370 patients with moderate to severe traumatic brain injury who were recruited from October 2017 to August 2019. Follow-up was completed in February 2020. Interventions: Adult patients with moderate to severe traumatic brain injury were randomly assigned to receive continuous infusion of 20% hypertonic saline solution plus standard care (n = 185) or standard care alone (controls; n = 185). The 20% hypertonic saline solution was administered for 48 hours or longer if patients remained at risk of intracranial hypertension. Main Outcomes and Measures: The primary outcome was Extended Glasgow Outcome Scale (GOS-E) score (range, 1-8, with lower scores indicating worse functional outcome) at 6 months, obtained centrally by blinded assessors and analyzed with ordinal logistic regression adjusted for prespecified prognostic factors (with a common odds ratio [OR] >1.0 favoring intervention). There were 12 secondary outcomes measured at multiple time points, including development of intracranial hypertension and 6-month mortality. Results: Among 370 patients who were randomized (median age, 44 [interquartile range, 27-59] years; 77 [20.2%] women), 359 (97%) completed the trial. The adjusted common OR for the GOS-E score at 6 months was 1.02 (95% CI, 0.71-1.47; P = .92). Of the 12 secondary outcomes, 10 were not significantly different. Intracranial hypertension developed in 62 (33.7%) patients in the intervention group and 66 (36.3%) patients in the control group (absolute difference, -2.6% [95% CI, -12.3% to 7.2%]; OR, 0.80 [95% CI, 0.51-1.26]). There was no significant difference in 6-month mortality (29 [15.9%] in the intervention group vs 37 [20.8%] in the control group; absolute difference, -4.9% [95% CI, -12.8% to 3.1%]; hazard ratio, 0.79 [95% CI, 0.48-1.28]). Conclusions and Relevance: Among patients with moderate to severe traumatic brain injury, treatment with continuous infusion of 20% hypertonic saline compared with standard care did not result in a significantly better neurological status at 6 months. However, confidence intervals for the findings were wide, and the study may have had limited power to detect a clinically important difference. Trial Registration: ClinicalTrials.gov Identifier: NCT03143751.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Fluidoterapia , Solución Salina Hipertónica/uso terapéutico , Adulto , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Terapia Combinada , Femenino , Escala de Consecuencias de Glasgow , Humanos , Hipernatremia/etiología , Hipnóticos y Sedantes/uso terapéutico , Infusiones Intravenosas , Hipertensión Intracraneal/etiología , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Solución Salina Hipertónica/administración & dosificación , Solución Salina Hipertónica/efectos adversos
14.
J Phys Chem A ; 125(12): 2394-2401, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33754722

RESUMEN

Three Cu(II) coordination compounds with 4-methyl imidazole were obtained, such as [Cu(C4H6N2)4(NO3)2], [Cu(C4H6N2)4Br2], and [Cu(C4H6N2)4Cl2]. Crystallographic studies confirmed their structural similarity with Cu(II) in the active site of endogenous copper-zinc superoxide dismutase (CuZn-SOD). The superoxide anion radical (O2•-) scavenging activity was evaluated by the non-enzymatic experimental assay and followed the trend [Cu(C4H6N2)4(NO3)2] > [Cu(C4H6N2)4Br2] > [Cu(C4H6N2)4Cl2]. The density functional theory and the hard and soft acids and bases principle showed the importance of the electron-deficient character of Cu(II) in the chemical reactivity of the coordination compounds; Cu(II) is the softest site in the molecule and it is preferred for the nucleophilic and radical attacks of the soft O2•-. A simple rule was obtained: "the electron-deficient character of Cu(II) is the key index for the O2•- scavenging activity and is modulated by the electron-releasing counteranion effect on the coordination compound".

15.
Chemistry ; 26(41): 8976-8982, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32428253

RESUMEN

The addition of aluminum-based adjuvants in vaccines enhances the immune response to antigens. The strength of antigen adsorption on adjuvant gels is known to modulate vaccine efficacy. However, a detailed understanding of the mechanisms of interaction between aluminum gels and antigens is still missing. Herein, a new analytical approach based on dynamic nuclear polarization (DNP) enhanced NMR spectroscopy under magic angle spinning (MAS) is implemented to provide a molecular description of the antigen-adjuvant interface. This approach is demonstrated on hepatitis B surface antigen particles in combination with three aluminum gels obtained from different suppliers. Both noncovalent and covalent interactions between the phospholipids of the antigen particles and the surface of the aluminum gels are identified by using MAS DNP NMR 27 Al and 31 P correlation experiments. Although covalent interactions were detected for only one of the formulations, dipolar recoupling rotational echo adiabatic passage double resonance (REAPDOR) experiments reveal significant differences in the strength of weak interactions.


Asunto(s)
Adyuvantes Inmunológicos/química , Aluminio/química , Antígenos/química , Vacunas/química , Adsorción , Antígenos/inmunología , Composición de Medicamentos , Espectroscopía de Resonancia Magnética/métodos , Vacunas/inmunología
16.
Angew Chem Int Ed Engl ; 59(37): 16167-16172, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452148

RESUMEN

A silica-supported monomeric alkylaluminum co-catalyst was prepared via surface organometallic chemistry by contacting tris(neopentyl)aluminum and partially dehydroxylated silica. This system, fully characterized by solid-state 27 Al NMR spectroscopy augmented by computational studies, efficiently activates (n Bu3 P)2 NiCl2 towards dimerization of ethene, demonstrating comparable activity to previously reported dimeric diethylaluminum chloride supported on silica. Three types of aluminum surface species have been identified: monografted tetracoordinated Al species as well as two types of bisgrafted Al species-tetra- and pentacoordinated. Of them, only the monografted Al species is proposed to be able to activate the (n Bu3 P)2 NiCl2 complex and generate the active cationic species.

17.
Inorg Chem ; 59(18): 13050-13066, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32167301

RESUMEN

While 17O NMR is increasingly being used for elucidating the structure and reactivity of complex molecular and materials systems, much effort is still required for it to become a routine analytical technique. One of the main difficulties for its development comes from the very low natural abundance of 17O (0.04%), which implies that isotopic labeling is generally needed prior to NMR analyses. However, 17O-enrichment protocols are often unattractive in terms of cost, safety, and/or practicality, even for compounds as simple as metal oxides. Here, we demonstrate how mechanochemistry can be used in a highly efficient way for the direct 17O isotopic labeling of a variety of s-, p-, and d-block oxides, which are of major interest for the preparation of functional ceramics and glasses: Li2O, CaO, Al2O3, SiO2, TiO2, and ZrO2. For each oxide, the enrichment step was performed under ambient conditions in less than 1 h and at low cost, which makes these synthetic approaches highly appealing in comparison to the existing literature. Using high-resolution solid-state 17O NMR and dynamic nuclear polarization, atomic-level insight into the enrichment process is achieved, especially for titania and alumina. Indeed, it was possible to demonstrate that enriched oxygen sites are present not only at the surface but also within the oxide particles. Moreover, information on the actual reactions occurring during the milling step could be obtained by 17O NMR, in terms of both their kinetics and the nature of the reactive species. Finally, it was demonstrated how high-resolution 17O NMR can be used for studying the reactivity at the interfaces between different oxide particles during ball-milling, especially in cases when X-ray diffraction techniques are uninformative. More generally, such investigations will be useful not only for producing 17O-enriched precursors efficiently but also for understanding better mechanisms of mechanochemical processes themselves.

18.
Phys Chem Chem Phys ; 20(44): 27865-27877, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30398243

RESUMEN

We report the study of high-temperature melts (1600-2300 °C) and related glasses in the SrO-Al2O3-SiO2 phase diagram considering three series: (i) depolymerized ([SrO]/[Al2O3] = 3); (ii) fully polymerized ([SrO]/[Al2O3] = 1); and (iii) per-aluminous ([SrO]/[Al2O3] < 1). By considering the results from high-temperature 27Al NMR and high-temperature neutron diffraction, we demonstrate that the structure of the polymerized melts is controlled by a close-to-random distribution of Al and Si in the tetrahedral sites, while the depolymerized melts show smaller rings with a possible loss of non-bridging oxygens on AlO4 units during cooling for high-silica compositions. A few five-fold coordinated VAl sites are present in all compositions, except per-aluminous ones where high amounts of high-coordinated aluminium are found in glasses and melts with complex temperature dependence. In high-temperature melts, strontium has a coordination number of 8 or less, i.e. less than in the corresponding glasses. The dynamics of high-temperature melts were studied from 27Al NMR relaxation and compared to macroscopic shear viscosity data. These methods provide correlation times in close agreement. At very high temperatures, the NMR correlation times can be related to the oxygen self-diffusion coefficient, and we show a decrease of the latter with increasing Si/(Al + Si) ratios for polymerized melts with no compositional dependence for depolymerized ones. The dominant parameter controlling the temperature dependence of the aluminum environment of all melts is the distribution of Al-(OSi)p(OAl)(4-p) units.

19.
Inorg Chem ; 57(21): 13702-13712, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30353736

RESUMEN

Precise research on the RbF-Al2O3 system was carried out by means of combining X-ray powder diffraction, high-field solid-state NMR spectroscopy, and thermal analysis methods. α-Rb3AlF6, RbAlO2, Rb2Al22O34, and new phase, Rb2Al2O3F2, were identified in the system. The structure of this new rubidium oxofluoroaluminate was determined. It is built up from single layers of oxygen-connected AlO3F tetrahedra, those layers beeing separated by fluorine atoms. This type of structure exhibits a decent ionic conductivity at ambient temperature, 1.74 × 10-6 S cm-1. The similar structural arrangement of O3Al-O-AlO3 and FO2Al-O-AlO2F tetrahedra of the conduction planes in Rb2Al22O34 and Rb2Al2O3F2 were confirmed by 27Al NMR measurements. A thermal analysis of the RbF-Al2O3 system revealed that it can be defined as a pseudobinary subsystem of the more general quaternary RbF-AlF3-Al2O3-Rb2O phase diagram. From a phase analysis of individual phase fields, the mutual metastable behavior of all founded phases can be considered. It was observed that fluoro- and oxoaluminates exist together. Rb2Al2O3F2 is more stable under high temperature. Rubidium fluoro- and oxoaluminates are metastable precursors of the thermodynamically more stable structure of rubidium oxofluoroaluminate.

20.
J Phys Chem B ; 122(41): 9567-9583, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30222349

RESUMEN

The structure of strontium glasses with the composition (SiO2)1-2 x(Al2O3) x(SrO) x ( R = [SrO]/[Al2O3] = 1) and (SiO2)1-4 x(Al2O3) x(SrO)3 x ( R = 3) has been explored experimentally over both short- and intermediate-length scales using neutron diffraction, 27Al and 29Si nuclear magnetic resonance, and classical molecular dynamics simulations in model systems containing around 10 000 atoms. We aim at understanding the structural role of aluminum and strontium as a function of the chemical composition of these glasses. The short- and medium-range structure such as aluminum coordination, bond angle distribution, Q( n) distribution, and oxygen speciation have been systematically studied. Two potential forms of the repulsive short-range interactions have been investigated, namely, the Buckingham and Morse forms. The comparison of these forms allows us to derive general trends independent of the particular choice of the potential form. In both cases, it is found that aluminum ions are mainly fourfold coordinated and mix with the silicon network favoring the Al/Si mixing in terms of Al-O-Si linkages. For the R = 1 glass series, despite the full charge compensation ([SrO] = [Al2O3]), a small fraction of fivefold aluminum is observed both experimentally and in MD simulations, whereas the concentration of sixfold aluminum is negligible. MD shows that the fivefold aluminum units AlO5 preferentially adopt a small ring configuration and link to tricoordinated oxygen atoms whose population increases with the aluminum content and are mainly found in OAl3 and OAl2Si configurations. The modeled Sr speciation mainly involves SrO7 and SrO8 polyhedra, giving a range of average Sr2+ coordination numbers between 7 and 8 slightly dependent on the short-range repulsive potential form. A detailed statistical analysis of T-O-T' (T, T' = Al,Si), accounting for the population of the various oxygen speciations, reveals that both potentials predict a nearly identical Al/Si mixing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA