Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(1): 105-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36088646

RESUMEN

BACKGROUND: Plants respond to attackers by triggering phytohormones signaling associated metabolites, including herbivore-induced plant volatiles (HIPVs). HIPVs can indirectly act against herbivory by recruitment of natural enemies and priming of neighboring plants. Ostrinia furnacalis and Mythimna separata are important insect herbivores of maize plants that have a devastating influence on yield. However, little is known about how maize temporally reconfigures its defense systems against these herbivores and variation of neighboring plant resistance. RESULTS: This study investigated the effects of HIPVs on the behavior of the dominant predatory beetle Harmonia axyridis and priming in neighboring maize defense against O. furnacalis and M. separata over time. The results showed that maize damaged by either O. furnacalis or M. separata enhanced the release of volatiles including terpenes, aldehydes, alkanes and an ester, which elicited an increased attractive response to H. axyridis after 3 and 12 h, respectively. O. furnacalis damage resulted in accumulations of leaf jasmonic acid (JA) and salicylic acid in maize after 6 and 3 h, respectively, while M. separata damage only raised the JA level after 3 h. Furthermore, HIPVs were able to prime neighboring plants through the accumulation of JA after 24 h. Both larvae showed a significant decrease in weight accumulation after 48 h of feeding on the third leaves of the primed plant. CONCLUSION: Taken together, the findings provide a dynamic overview of how attacked maize reconfigures its volatiles and phytohormones to defend against herbivores, as well as priming of neighboring plants against oncoming attacks. © 2022 Society of Chemical Industry.


Asunto(s)
Zea mays
2.
Sci Total Environ ; 815: 152840, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995605

RESUMEN

Plant root-leaf communication signals are critical for plant defense. Numerous studies show that belowground organisms can alter systemically resistance traits in aboveground parts against herbivores. However, there are limited studies on root-knot nematode-aphid interaction. Moreover, the impact of nematode's initial density and infection time on plant defense is poorly understood. Here we aim to examine the induced defense responses by root-knot nematode Meloidogyne incognita against aboveground feeding aphid Sitobion avenae in wheat. Further, we investigated the influence of the nematode infection density as well as the length of infection in these interactions. We tested the direct and indirect defense responses triggered by M. incognita against S. avenae as well as how the responses affect the preference of Harmonia axyridis. Plant volatiles and hormones were determined to explore plant defense mechanisms that mediate aboveground-belowground defense. The photosynthetic rate was tested to examine plant tolerance strategy. We found that, both low and high densities M. incognita root infection at 7 days post inoculation (dpi) reduced the feeding of the aphid S. avenae. Behavioral assay showed that H. axyridis preferred plants co-damaged by both M. incognita and S. avenae at 7 dpi. M. incognita infection induced the changes of jasmonic acid, salicylic acid and volatile content, which mediated plant response to S. avenae. Furthermore, photosynthetic rate in wheat increased at 5 dpi under 300 M. incognita or 1000 M. incognita infection. These results suggest that plant roots induced multiple defense strategies against foliar herbivores as damages increased. Our study provides evidence of a complex dynamic response of wheat aboveground defense against aphids in response to belowground nematode damage on a temporal scale.


Asunto(s)
Áfidos , Tylenchoidea , Animales , Herbivoria , Hormonas , Triticum
3.
Pest Manag Sci ; 76(11): 3649-3656, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32418333

RESUMEN

BACKGROUND: Brown rice planthopper (BPH) is a devastating rice pest in Asia. Bph14 is the first cloned BPH-resistance gene in rice, inducing callose deposition while impeding BPH feeding. Nitrogen application affects plant growth and resistance. However, there is little evidence on the influence of nitrogen on the callose content or regulation of rice BPH resistance. In this study, Luoyou9348 (containing Bph14 and highly resistant to BPH) and Yangliangyou6 (without Bph14 and susceptible to BPH) were planted under varying nitrogen regimes (0 , 90, 180 kg ha-1 ) to determine their effects on the resistance levels of rice to BPH feeding. The experiments involved BPH performance, plant volatile profiling and BPH preferences in laboratory and field experiments. RESULTS: We found that BPH egg hatching rate, total number of eggs laid and BPH preference increased with increasing nitrogen application in both rice varieties. However, the expression of Bph14, callose content and BPH feeding significantly declined with an increase in nitrogen fertilization in Luoyou9348, compared with Yangliangyou6. Also, the emission of volatile terpene compounds increased with increasing nitrogen application, which resulted in an increase in BPH numbers on both varieties. Two-way analysis of variance indicated a significant interaction between rice variety and nitrogen in BPH feeding behavior. CONCLUSION: Our findings provide an insight for addressing problems involved in the incorporation of insecticidal genes into crop plants. The effects of nitrogen on insecticidal gene expression in rice plant defense are discussed. © 2020 Society of Chemical Industry.


Asunto(s)
Hemípteros , Animales , Asia , Clonación Molecular , Hemípteros/genética , Proteínas de Insectos , Nitrógeno , Oryza/genética
4.
BMC Plant Biol ; 19(1): 514, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767006

RESUMEN

BACKGROUND: Plant defense against herbivores begins with perception. The earlier plant detects the harm, the greater plant will benefit in its arm race with the herbivore. Before feeding, the larvae of the rice pest Cnaphalocrocis medinalis, initially spin silk and fold up a leaf. Rice can detect and protect itself against C. medinalis feeding. However, whether rice could perceive C. medinalis leaf rolling behavior is currently unknown. Here, we evaluated the role of leaf rolling by C. medinalis and artificial leaf rolling in rice plant defense and its indirect effect on two important C. medinalis parasitoids (Itoplectis naranyae and Apanteles sp.) through a combination of volatile profiling, gene-transcriptional and phytohormonal profiling. RESULTS: Natural leaf rolling by C. medinalis resulted in an increased attraction of I. naranyae when compared to the undamaged plant after 12 h. Volatile analysis revealed that six out of a total 22 components significantly increased in the headspace of C. medinalis rolled plant when compared to undamaged plant. Principal component analysis of these components revealed similarities in the headspace of undamaged plant and artificially rolled plant while the headspace volatiles of C. medinalis rolled plant deferred significantly. Leaf rolling and feeding by C. medinalis up-regulated the plant transcriptome and a series of jasmonic acid (JA) and salicylic acid (SA) related genes. While feeding significantly increased JA level after 12 to 36 h, rolling significantly increased SA level after 2 to 12 h. Compared to artificial rolling, natural rolling significantly increased JA level after 36 h and SA level after 2 and 12 h. CONCLUSIONS: Our findings suggest that natural leaf rolling by C. medinalis can be perceived by rice plant. The detection of this behavior may serve as an early warning signal in favor of the rice plant defenses against C. medinalis.


Asunto(s)
Oryza/parasitología , Enfermedades de las Plantas/parasitología , Animales , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Mariposas Nocturnas/fisiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/parasitología , Ácido Salicílico/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA