RESUMEN
This paper discusses the results of the micro-Raman analysis performed on paper-like graphene oxide (GO) samples consisting of many functionalised graphene layers and annealed at moderate temperatures (≤500 °C) under vacuum conditions (p ≃ 10-4 mbar). The analysis of the standalone samples revealed that the obtained material is characterised by a noticeable disorder level but still stays below the commonly accepted threshold of high or total disorder. GO formed in a simple way showed two spectral bands above 1650 cm-1 recorded very rarely or not at all and their origin has been discussed in detail. The results also confirmed the metastable character of multilayer GO after the annealing process at moderate temperatures as the C/O ratio was kept between 2 and 3 and the spectral features were stable within the annealing temperature range.
RESUMEN
The development of the broad-bandwidth photon sources emitting in the soft X-ray range has attracted great attention for a long time due to the possible applications in high-resolution spectroscopy, nano-metrology, and material sciences. A high photon flux accompanied by a broad, smooth spectrum is favored for the applications such as near-edge X-ray absorption fine structure (NEXAFS), extended X-ray absorption fine structure (EXAFS), or XUV/X-ray coherence tomography (XCT). So far, either large-scale facilities or technologically challenging systems providing only limited photon flux in a single shot dominate the suitable sources. Here, we present a soft, broad-band (1.5 nm - 10.7 nm) soft X-ray source. The source is based on the interaction of very intense laser pulses with a target formed by a cluster mixture. A photon yield of 2.4 × 1014 photons/pulse into 4π (full space) was achieved with a medium containing Xe clusters of moderate-size mixed with a substantial amount of extremely large ones. It is shown that such a cluster mixture enhances the photon yield in the soft X-ray range by roughly one order of magnitude. The size of the resulting source is not beneficial (≤500 µm but this deficit is compensated by a specific spectral structure of its emission fulfilling the specific needs of the spectroscopic (broad spectrum and high signal dynamics) and metrological applications (broad and smoothed spectrum enabling a sub-nanometer resolution limit for XCT).
RESUMEN
A near 1-keV photons from the Xe/He plasma produced by the interaction of laser beam with a double stream gas puff target were employed for studies of L absorption edges of period 4 transitional metals with atomic number Z from 26 to 30. The dual-channel, compact NEXAFS system was employed for the acquisition of the absorption spectra. L1-3 absorption edges of the samples were identified in transmission mode using broadband emission from the Xe/He plasma to show the applicability of such source and measurement system to the NEXAFS studies of the transition metals, including magnetic materials.
RESUMEN
Characterization of Xe emission in the spectral range between 1 and 1.5 keV is presented in the case when the laser-plasma is generated by nanosecond laser pulse irradiation of a double stream Xe/He gas-puff target. Gas target density was estimated using extreme ultraviolet (EUV) radiography. Emission spectral characteristics in the wavelength range from 0.8 to 5.2â nm were determined by using a flat field SXR spectrometer. Significant emission was recorded in two high-energy bands, the first one at wavelengths 0.8-1.6â nm (photon energy range 0.78-1.5 keV) and the second one at 1.6-2.5â nm (0.5-0.78 keV). Both plasma size and photon yield in each band were measured separately to individually assess radiation and source characteristics. Moreover, a proof-of-principle experiment for near-edge X-ray absorption fine structure spectroscopy of metallic sample near the L2,3 absorption edge was performed to show one of the applicability areas of such a compact source.
RESUMEN
We present a 2-D mapping of a sample thickness with nanometer accuracy employing a compact arrangement of near-edge X-ray absorption fine structure (NEXAFS) technique. A NEXAFS spectrum coupled with a scanning system was used to generate a 2-D thickness map of the TiO2 sample (anatase form) deposited on the top of a SiN membrane. The thickness values were retrieved from the experimental data by applying different methods of data processing. In the paper, the detailed analysis of the data processing methods and the identified sources of the errors show that the proposed procedure based on averaging two imperfect estimates reduces the error caused by the uncontrolled bias of the measured signals. This procedure was termed as the average one. The estimates from the proposed average approach and the standard absorption-jump ratio in the absorption edge vicinity were compared with the direct results obtained by applying scanning electron microscopy (SEM). The experimental arrangement of the NEXAFS spectroscopy system, the data acquisition method, as well as the possible error sources, are presented and discussed in detail.
RESUMEN
We present a proof of principle experiment on single-shot near edge soft X-ray fine structure (NEXAFS) spectroscopy with the use of a laboratory laser-plasma light source. The source is based on a plasma created as a result of the interaction of a nanosecond laser pulse with a double stream gas puff target. The laser-plasma source was optimized for efficient soft X-ray (SXR) emission from the krypton/helium target in the wavelength range from 2 nm to 5 nm. This emission was used to acquire simultaneously emission and absorption spectra of soft X-ray light from the source and from the investigated sample using a grazing incidence grating spectrometer. NEXAFS measurements in a transmission mode revealed the spectral features near the carbon K-α absorption edge of thin polyethylene terephthalate (PET) film and L-ascorbic acid in a single-shot. From these features, the composition of the PET sample was successfully obtained. The NEXAFS spectrum of the L-ascorbic acid obtained in a single-shot exposure was also compared to the spectrum obtained a multi-shot exposure and to numerical simulations showing good agreement. In the paper, the detailed information about the source, the spectroscopy system, the absorption spectra measurements and the results of the studies are presented and discussed.
RESUMEN
We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.
RESUMEN
A tomographic method for three-dimensional reconstruction of low density objects is presented and discussed. The experiment was performed in the extreme ultraviolet (EUV) spectral region using a desktop system for enhanced optical contrast and employing a compact laser-plasma EUV source, based on a double stream gas puff target. The system allows for volume reconstruction of transient gaseous objects, in this case gas jets, providing additional information for further characterization and optimization. Experimental details and reconstruction results are shown.