Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766909

RESUMEN

We report the complete genome sequencing and annotation of four Salmonella enterica serovar Enteritidis isolates, two that are representative of the Central/Eastern African clade (CP255 and D7795) and two of the Global Epidemic clade (A1636 and P125109).

3.
PLoS Negl Trop Dis ; 13(7): e0007540, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31348776

RESUMEN

Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype. The introduction of alternative infection models could help to improve the quality and reproducibility of pathogenesis research by facilitating larger-scale experiments. To investigate the virulence of S. Typhimurium ST313 in comparison with ST19, a combination of avian and insect disease models were used. We performed experimental infections in five lines of inbred and one line of outbred chickens, as well as in the alternative chick embryo and Galleria mellonella wax moth larvae models. This extensive set of experiments identified broadly similar patterns of disease caused by the African and global pathovariants of Salmonella Typhimurium in the chicken, the chicken embryo and insect models. A comprehensive analysis of all the chicken infection experiments revealed that the African ST313 isolate D23580 had a subtle phenotype of reduced levels of organ colonisation in inbred chickens, relative to ST19 strain 4/74. ST313 isolate D23580 also caused reduced mortality in chicken embryos and insect larvae, when compared with ST19 4/74. We conclude that these three infection models do not reproduce the characteristics of the systemic disease caused by S. Typhimurium ST313 in humans.


Asunto(s)
Pollos/microbiología , Insectos/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , África , Animales , Embrión de Pollo , Modelos Animales de Enfermedad , Larva/microbiología , Mariposas Nocturnas/microbiología , Reproducibilidad de los Resultados , Salmonelosis Animal/mortalidad , Salmonella typhimurium/genética , Virulencia
4.
PLoS Biol ; 17(1): e3000059, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645593

RESUMEN

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


Asunto(s)
Infecciones por Salmonella/genética , Salmonella typhimurium/genética , Animales , Gastroenteritis/microbiología , Perfilación de la Expresión Génica/métodos , Variación Genética/genética , Humanos , Macrófagos , Ratones , Infecciones por Salmonella/microbiología , Virulencia
5.
Cell Tissue Res ; 375(2): 409-424, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30259138

RESUMEN

The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore, livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated, suspended in Matrigel, cultured, cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term, renewable resource for investigating species-specific intestinal infections with a variety of pathogens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mucosa Intestinal/metabolismo , Animales , Bovinos , Diferenciación Celular , Criopreservación , Ganado , Ratones Endogámicos C57BL , Organoides/metabolismo , Fenotipo , Salmonella typhimurium/fisiología , Porcinos , Supervivencia Tisular , Toxoplasma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA