Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc IEEE Int Symp Biomed Imaging ; 2016: 1025-1028, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27390615

RESUMEN

Quantitative analysis of whole slide images (WSIs) in a large cohort may provide predictive models of clinical outcome. However, the performance of the existing techniques is hindered as a result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. Although unsupervised feature learning provides a promising way in learning pertinent features without human intervention, its capability can be greatly limited due to the lack of well-curated examples. In this paper, we explored the transferability of knowledge acquired from a well-curated Glioblastoma Multiforme (GBM) dataset through its application to the representation and characterization of tissue histology from the Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Our experimental results reveals two major phenotypic subtypes with statistically significantly different survival curves. Further differential expression analysis of these two subtypes indicates enrichment of genes regulated by NF-kB in response to TNF and genes up-regulated in response to IFNG.

2.
Mol Cell ; 59(2): 176-87, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26145171

RESUMEN

The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes.


Asunto(s)
Proteína BRCA2/metabolismo , Recombinación Homóloga , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína de Replicación A/metabolismo , Sustitución de Aminoácidos , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular , Femenino , Células HeLa , Humanos , Modelos Biológicos , Imitación Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Complejo de la Endopetidasa Proteasomal/genética , Subunidades de Proteína , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/genética
3.
Cancer Res ; 74(18): 5032-5044, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25172842

RESUMEN

Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Glándulas Mamarias Humanas/anomalías , Glándulas Mamarias Humanas/patología , Densidad de la Mama , Neoplasias de la Mama/genética , Antígenos CD36/biosíntesis , Daño del ADN , Células Epiteliales/patología , Femenino , Humanos , Fenotipo , Transducción de Señal
4.
Cancer Discov ; 2(9): 826-39, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22777768

RESUMEN

UNLABELLED: Although high mammographic density is considered one of the strongest risk factors for invasive breast cancer, the genes involved in modulating this clinical feature are unknown. Tissues of high mammographic density share key histologic features with stromal components within malignant lesions of tumor tissues, specifically low adipocyte and high extracellular matrix (ECM) content. We show that CD36, a transmembrane receptor that coordinately modulates multiple protumorigenic phenotypes, including adipocyte differentiation, angiogenesis, cell-ECM interactions, and immune signaling, is greatly repressed in multiple cell types of disease-free stroma associated with high mammographic density and tumor stroma. Using both in vitro and in vivo assays, we show that CD36 repression is necessary and sufficient to recapitulate the above-mentioned phenotypes observed in high mammographic density and tumor tissues. Consistent with a functional role for this coordinated program in tumorigenesis, we observe that clinical outcomes are strongly associated with CD36 expression. SIGNIFICANCE: CD36 simultaneously controls adipocyte content and matrix accumulation and is coordinately repressed in multiple cell types within tumor and high mammographic density stroma, suggesting that activation of this stromal program is an early event in tumorigenesis. Levels of CD36 and extent of mammographic density are both modifiable factors that provide potential for intervention.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Antígenos CD36/biosíntesis , Células del Estroma/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antígenos CD36/genética , Diferenciación Celular/fisiología , Femenino , Humanos , Mamografía , Ratones , Ratones Noqueados , Factores de Riesgo , Transducción de Señal , Células del Estroma/patología
5.
PLoS One ; 7(1): e28802, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22242152

RESUMEN

INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i) mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii) retention and spatial localization of chemical compounds vary within and between each cell line; and (iii) the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Colorantes Fluorescentes/metabolismo , Microscopía/métodos , Animales , Arabidopsis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ligandos , Ratones , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología
6.
BMC Bioinformatics ; 12: 484, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185703

RESUMEN

BACKGROUND: Our goals are to develop a computational histopathology pipeline for characterizing tumor types that are being generated by The Cancer Genome Atlas (TCGA) for genomic association. TCGA is a national collaborative program where different tumor types are being collected, and each tumor is being characterized using a variety of genome-wide platforms. Here, we have developed a tumor-centric analytical pipeline to process tissue sections stained with hematoxylin and eosin (H&E) for visualization and cell-by-cell quantitative analysis. Thus far, analysis is limited to Glioblastoma Multiforme (GBM) and kidney renal clear cell carcinoma tissue sections. The final results are being distributed for subtyping and linking the histology sections to the genomic data. RESULTS: A computational pipeline has been designed to continuously update a local image database, with limited clinical information, from an NIH repository. Each image is partitioned into blocks, where each cell in the block is characterized through a multidimensional representation (e.g., nuclear size, cellularity). A subset of morphometric indices, representing potential underlying biological processes, can then be selected for subtyping and genomic association. Simultaneously, these subtypes can also be predictive of the outcome as a result of clinical treatments. Using the cellularity index and nuclear size, the computational pipeline has revealed five subtypes, and one subtype, corresponding to the extreme high cellularity, has shown to be a predictor of survival as a result of a more aggressive therapeutic regime. Further association of this subtype with the corresponding gene expression data has identified enrichment of (i) the immune response and AP-1 signaling pathways, and (ii) IFNG, TGFB1, PKC, Cytokine, and MAPK14 hubs. CONCLUSION: While subtyping is often performed with genome-wide molecular data, we have shown that it can also be applied to categorizing histology sections. Accordingly, we have identified a subtype that is a predictor of the outcome as a result of a therapeutic regime. Computed representation has become publicly available through our Web site.


Asunto(s)
Glioblastoma/patología , Carcinoma de Células Renales/clasificación , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Perfilación de la Expresión Génica , Glioblastoma/clasificación , Glioblastoma/genética , Humanos , Transducción de Señal
7.
BMC Med ; 7: 77, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20003408

RESUMEN

BACKGROUND: Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity. METHODS: A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI50 (dose required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity. RESULTS: The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI50 values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response. CONCLUSIONS: A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signalling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama , Espermina/análogos & derivados , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Espermina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA