Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Cell Neurosci ; 18: 1325630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638304

RESUMEN

Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.

2.
J Mol Neurosci ; 69(2): 333-342, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31290093

RESUMEN

Identifying novel neuroprotectants that can halt or reverse the neurological effects of stroke is of interest to both clinicians and scientists. We and others previously showed the pre-clinical neuroprotective efficacy of neuregulin-1 (NRG-1) in rats following focal brain ischemia. In this study, we examined neuroprotection by exogenous and endogenous NRG-1 using a mouse model of ischemic stroke. C57BL6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. NRG-1 or vehicle was infused intra-arterially (i.a.) or intravenously (i.v.) after MCAO and before the onset of reperfusion. NRG-1 treatment (16 µg/kg; i.a.) reduced cerebral cortical infarct volume by 72% in mice when delivered post-ischemia. NRG-1 also inhibited neuronal injury as measured by Fluoro Jade B labeling and rescued NeuN immunoreactivity in neurons. Neuroprotection by NRG-1 was also observed in mice when administered i.v. (100 µg/kg) in both male and female mice. We investigated whether endogenous NRG-1 was neuroprotective using male and female heterozygous NRG-1 knockout mice (NRG-1+/-) compared with wild-type mice (WT) littermates. NRG-1+/- and WT mice were subjected to MCAO for 45 min, and infarct size was measured 24 h following MCAO. NRG-1+/- mice displayed a sixfold increase in cortical infarct size compared with WT mice. These results demonstrate that NRG-1 treatment mitigates neuronal damage following cerebral ischemia. We further showed that reduced endogenous NRG-1 results in exacerbated neuronal injury in vivo. These findings suggest that NRG-1 represents a promising therapy to treat stroke in human patients.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neurregulina-1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Femenino , Heterocigoto , Infarto de la Arteria Cerebral Media/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neurregulina-1/genética
3.
J Neuroinflammation ; 13(1): 237, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27596278

RESUMEN

BACKGROUND: We previously demonstrated that neuregulin-1 (NRG-1) was neuroprotective in rats following ischemic stroke. Neuroprotection by NRG-1 was associated with the suppression of pro-inflammatory gene expression in brain tissues. Over-activation of brain microglia can induce pro-inflammatory gene expression by activation of transcriptional regulators following stroke. Here, we examined how NRG-1 transcriptionally regulates inflammatory gene expression by computational bioinformatics and in vitro using microglial cells. METHODS: To identify transcriptional regulators involved in ischemia-induced inflammatory gene expression, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) and NRG-1 treatment. Gene expression profiles of brain tissues following ischemia and NRG-1 treatment were examined by microarray technology. The Conserved Transcription Factor-Binding Site Finder (CONFAC) bioinformatics software package was used to predict transcription factors associated with inflammatory genes induced following stroke and suppressed by NRG-1 treatment. NF-kappa B (NF-kB) was identified as a potential transcriptional regulator of NRG-1-suppressed genes following ischemia. The involvement of specific NF-kB subunits in NRG-1-mediated inflammatory responses was examined using N9 microglial cells pre-treated with NRG-1 (100 ng/ml) followed by lipopolysaccharide (LPS; 10 µg/ml) stimulation. The effects of NRG-1 on cytokine production were investigated using Luminex technology. The levels of the p65, p52, and RelB subunits of NF-kB and IkB-α were determined by western blot analysis and ELISA. Phosphorylation of IkB-α was investigated by ELISA. RESULTS: CONFAC identified 12 statistically over-represented transcription factor-binding sites (TFBS) in our dataset, including NF-kBP65. Using N9 microglial cells, we observed that NRG-1 significantly inhibited LPS-induced TNFα and IL-6 release. LPS increased the phosphorylation and degradation of IkB-α which was blocked by NRG-1. NRG-1 also prevented the nuclear translocation of the NF-kB p65 subunit following LPS administration. However, NRG-1 increased production of the neuroprotective cytokine granulocyte colony-stimulating factor (G-CSF) and the nuclear translocation of the NF-kB p52 subunit, which is associated with the induction of anti-apoptotic and suppression of pro-inflammatory gene expression. CONCLUSIONS: Neuroprotective and anti-inflammatory effects of NRG-1 are associated with the differential regulation of NF-kB signaling pathways in microglia. Taken together, these findings suggest that NRG-1 may be a potential therapeutic treatment for treating stroke and other neuroinflammatory disorders.


Asunto(s)
Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Microglía/efectos de los fármacos , Neurregulina-1/uso terapéutico , Animales , Línea Celular Transformada , Biología Computacional , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Factor Estimulante de Colonias de Granulocitos/metabolismo , Proteínas I-kappa B/metabolismo , Lipopolisacáridos/farmacología , Masculino , Análisis por Micromatrices , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
4.
BMC Genomics ; 17: 130, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912237

RESUMEN

BACKGROUND: Delayed or secondary cell death that is caused by a cascade of cellular and molecular processes initiated by traumatic brain injury (TBI) may be reduced or prevented if an effective neuroprotective strategy is employed. Microarray and subsequent bioinformatic analyses were used to determine which genes, pathways and networks were significantly altered 24 h after unilateral TBI in the rat. Ipsilateral hemi-brain, the corresponding contralateral hemi-brain, and naïve (control) brain tissue were used for microarray analysis. RESULTS: Ingenuity Pathway Analysis showed cell death and survival (CD) to be a top molecular and cellular function associated with TBI on both sides of the brain. One major finding was that the overall gene expression pattern suggested an increase in CD genes in ipsilateral brain tissue and suppression of CD genes contralateral to the injury which may indicate an endogenous protective mechanism. We created networks of genes of interest (GOI) and ranked the genes by the number of direct connections each had in the GOI networks, creating gene interaction hierarchies (GIHs). Cell cycle was determined from the resultant GIHs to be a significant molecular and cellular function in post-TBI CD gene response. CONCLUSIONS: Cell cycle and apoptosis signalling genes that were highly ranked in the GIHs and exhibited either the inverse ipsilateral/contralateral expression pattern or contralateral suppression were identified and included STAT3, CCND1, CCND2, and BAX. Additional exploration into the remote suppression of CD genes may provide insight into neuroprotective mechanisms that could be used to develop therapies to prevent cell death following TBI.


Asunto(s)
Lesiones Encefálicas/genética , Ciclo Celular/genética , Muerte Celular/genética , Epistasis Genética , Redes Reguladoras de Genes , Animales , Apoptosis , Encéfalo/fisiopatología , Ciclina D1/genética , Ciclina D2/genética , Masculino , Análisis por Micromatrices , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Proteína X Asociada a bcl-2/genética
5.
J Neuroinflammation ; 12: 64, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25880399

RESUMEN

BACKGROUND: Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. METHODS: We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. CONCLUSION: Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/uso terapéutico , Encefalitis/inducido químicamente , Isoflurofato/toxicidad , Neurregulina-1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraarteriales , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero , Ratas , Ratas Sprague-Dawley
6.
BMC Genomics ; 14: 282, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23617241

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI. RESULTS: Inspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH. CONCLUSIONS: Bioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development.


Asunto(s)
Lesiones Encefálicas/genética , Perfilación de la Expresión Génica , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Biología Computacional , Redes Reguladoras de Genes , Inflamación/genética , Masculino , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley
7.
Brain Res ; 1495: 76-85, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23246490

RESUMEN

Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies.


Asunto(s)
Encéfalo , Regulación de la Expresión Génica/genética , Ataque Isquémico Transitorio/genética , Proteína Proto-Oncogénica c-ets-1/genética , Animales , Sitios de Unión/genética , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/genética , Flujometría por Láser-Doppler , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Proteína Proto-Oncogénica c-ets-1/biosíntesis , Ratas , Ratas Sprague-Dawley , Transcriptoma
8.
Comp Med ; 62(5): 427-38, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23114047

RESUMEN

The goal of this study was to characterize acute neuronal injury in a novel nonhuman primate (NHP) ischemic stroke model by using multiple outcome measures. Silk sutures were inserted into the M1 segment of the middle cerebral artery of rhesus macaques to achieve permanent occlusion of the vessel. The sutures were introduced via the femoral artery by using endovascular microcatheterization techniques. Within hours after middle cerebral artery occlusion (MCAO), infarction was detectable by using diffusion-weighted MRI imaging. The infarcts expanded by 24 h after MCAO and then were detectable on T2-weighted images. The infarcts seen by MRI were consistent with neuronal injury demonstrated histologically. Neurobehavioral function after MCAO was determined by using 2 neurologic testing scales. Neurologic assessments indicated that impairment after ischemia was limited to motor function in the contralateral arm; other neurologic and behavioral parameters were largely unaffected. We also used microarrays to examine gene expression profiles in peripheral blood mononuclear cells after MCAO-induced ischemia. Several genes were altered in a time-dependent manner after MCAO, suggesting that this ischemia model may be suitable for identifying blood biomarkers associated with the presence and severity of ischemia. This NHP stroke model likely will facilitate the elucidation of mechanisms associated with acute neuronal injury after ischemia. In addition, the ability to identify candidate blood biomarkers in NHP after ischemia may prompt the development of new strategies for the diagnosis and treatment of ischemic stroke in humans.


Asunto(s)
Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Trastornos Psicomotores/patología , Accidente Cerebrovascular/patología , Animales , Western Blotting , Cateterismo , Citocinas/metabolismo , Técnicas de Diagnóstico Neurológico , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Técnicas Histológicas , Leucocitos Mononucleares/metabolismo , Macaca mulatta , Imagen por Resonancia Magnética , Análisis por Micromatrices , Neuronas/patología , Trastornos Psicomotores/etiología , Accidente Cerebrovascular/sangre
9.
Toxicol Appl Pharmacol ; 262(2): 194-204, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22583949

RESUMEN

Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague-Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 µg/kg BW, i.a) or NRG-GGF2 (48 µg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Isoflurofato/toxicidad , Neurregulina-1/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Convulsiones/prevención & control , Animales , Atropina/farmacología , Encéfalo/citología , Encéfalo/metabolismo , Inmunohistoquímica , Masculino , Neuronas/metabolismo , Isoformas de Proteínas , Bromuro de Piridostigmina/farmacología , Ratas , Ratas Sprague-Dawley , Convulsiones/metabolismo
10.
Biochem Biophys Res Commun ; 377(2): 556-561, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18930027

RESUMEN

The Purkinje cell degeneration (PCD) mutant mouse is characterized by a degeneration of cerebellar Purkinje cells and progressive ataxia. To identify the molecular mechanisms that lead to the death of Purkinje neurons in PCD mice, we used Affymetrix microarray technology to compare cerebellar gene expression profiles in pcd3J mutant mice 14 days of age (prior to Purkinje cell loss) to unaffected littermates. Microarray analysis, Ingenuity Pathway Analysis (IPA) and expression analysis systematic explorer (EASE) software were used to identify biological and molecular pathways implicated in the progression of Purkinje cell degeneration. IPA analysis indicated that mutant pcd3J mice showed dysregulation of specific processes that may lead to Purkinje cell death, including several molecules known to control neuronal apoptosis such as Bad, CDK5 and PTEN. These findings demonstrate the usefulness of these powerful microarray analysis tools and have important implications for understanding the mechanisms of selective neuronal death and for developing therapeutic strategies to treat neurodegenerative disorders.


Asunto(s)
Apoptosis/genética , Perfilación de la Expresión Génica , Células de Purkinje/metabolismo , Transcripción Genética , Animales , Ratones , Ratones Mutantes , Análisis de Secuencia por Matrices de Oligonucleótidos , Células de Purkinje/citología
11.
Brain Res ; 1210: 39-47, 2008 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-18410912

RESUMEN

We previously showed that neuregulin-1 (NRG-1) protected neurons from death in vivo following focal ischemia. The goal of this study was to develop an in vitro rat ischemia model to examine the cellular and molecular mechanisms involved in the neuroprotective effects of NRG-1 on ischemia-induced neuronal death. Rat B-35 neuroblastoma cells differentiated by serum withdrawal, developed enhanced neuronal characteristics including, neurite extension and upregulation of neuronal markers of differentiation. When B35 neurons were subjected to oxygen glucose deprivation (OGD)/reoxygenation or glutamate, widespread neuronal death was seen after both treatments. Treatment with NRG-1 immediately after OGD significantly increased neuronal survival. NRG-1 administration also resulted in a significant decrease in annexin V, an early marker of apoptosis. However, the neurotoxic actions of glutamate were unaffected by NRG-1. The neuroprotective effects of NRG-1 were prevented by an inhibitor of the phosphatidylinositol-3-kinase/Akt pathway. These results provide a new model to gain insight into the mechanisms employed by NRG-1 to protect neurons from ischemic brain injury.


Asunto(s)
Infarto Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Citoprotección/efectos de los fármacos , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/farmacología , Neuronas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/fisiopatología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citoprotección/fisiología , Inhibidores Enzimáticos/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Modelos Biológicos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Neurregulina-1 , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Brain Res ; 1184: 277-83, 2007 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-17961519

RESUMEN

Neuregulin-1 (NRG-1) is a growth factor with potent neuroprotective capacity in ischemic stroke. We recently showed that NRG-1 reduced neuronal death following transient middle cerebral artery occlusion (tMCAO) by up to 90% with an extended therapeutic window. Here, we examined the neuroprotective potential of NRG-1 using a permanent MCAO ischemia (pMCAO) rat model. NRG-1 reduced infarction in pMCAO by 50% when administered prior to ischemia. We previously demonstrated using gene expression profiling that pMCAO was associated with an exaggerated excitotoxicity response compared to tMCAO. Therefore, we examined whether co-treatment with an inhibitor of excitotoxicity would augment the effect of NRG-1 following pMCAO. Both NRG-1 and the N-methyl-D-aspartate (NMDA) antagonist MK-801 similarly reduced infarct size following pMCAO. However, combination treatment with both NRG-1 and MK-801 resulted in greater neuroprotection than either compound alone, including a 75% reduction in cortical infarction compared to control. Consistent with these findings, NRG-1 reduced neuronal death using an in vitro ischemia model and this effect was augmented by MK-801. These results demonstrate the efficacy of NRG-1 in pMCAO rat focal ischemia model. Our findings further indicate the potential clinically relevance of NRG-1 alone or as a combination strategy for treating ischemic stroke.


Asunto(s)
Infarto Encefálico/etiología , Infarto Encefálico/prevención & control , Isquemia Encefálica/complicaciones , Neurregulina-1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Maleato de Dizocilpina/uso terapéutico , Glucosa/deficiencia , Hipoxia , Masculino , Neuroblastoma/patología , Ratas , Ratas Sprague-Dawley , Sales de Tetrazolio
13.
J Cereb Blood Flow Metab ; 26(4): 527-35, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16136057

RESUMEN

We have previously shown that neuregulin-1 (NRG-1) protects neurons from ischemic brain injury if administered before focal stroke. Here, we examined the therapeutic window and functional recovery after NRG-1 treatment in rats subjected to 90 mins of middle cerebral artery occlusion (MCAO) and 24 h of reperfusion. Neuregulin-1 (2.5 microg/kg [corrected] bolus, 1.25 microg/kg/min [corrected] infusion) reduced infarct volume by 89.2%+/-41.9% (mean+/-s.d.; n=8; P<0.01) if administered immediately after the onset of reperfusion. Neuroprotection was also evident if NRG-1 was administered 4 h (66.4%+/-52.6%; n=7; P<0.01) and 12 h (57.0%+/-20.8%; n=8; P<0.01) after reperfusion. Neuregulin-1 administration also resulted in a significant improvement of functional neurologic outcome compared with vehicle-treated animals (32.1%+/-5.7%; n=9; P<0.01). The neuroprotective effect of the single administration of NRG-1 was seen as long as 2 weeks after treatment. Neurons labeled with the neurodegeneration marker dye Fluoro-JadeB were observed after MCAO in the cortex, but the numbers were significantly reduced after NRG-1 treatment. These results indicate that NRG-1 is a potent neuroprotective compound with an extended therapeutic window that has practical therapeutic potential in treating individuals after ischemic brain injury.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Neurregulina-1/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neurregulina-1/administración & dosificación , Neurregulina-1/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/prevención & control , Factores de Tiempo
14.
J Androl ; 27(2): 302-10, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16304204

RESUMEN

Leptin-deficient (ob/ob) male mice are morbidly obese and exhibit impaired reproductive function. The objective of this study was to assess the effect of a leptin deficiency on testicular morphology, germ cell development, apoptotic activity within germ cells, and expression levels of apoptosis-related genes in the testis. Sixteen week-old ob/ob male mice (n = 8) and controls (n = 8) were killed, and their reproductive organs were weighed. Testes were processed for either histomorphological analysis (hematoxylin and eosin [H&E] staining), germ cell apoptosis assessment (deoxy-UTP-digoxigenin nick end labeling [TUNEL] method), or apoptosis-related gene expression analysis (microarray). Cross sections of the testes of leptin-deficient animals showed reduced seminiferous tubule area, fewer pachytene spermatocytes, and fewer tubules exhibiting elongated spermatids/mature spermatozoa. Condensation of germ cell nuclei and Sertoli cell vacuolization were evident in the testes of some ob/ob animals. Overall there was an elevation of apoptotic activity in the germ cells of ob/ob mice, particularly within the pachytene spermatocytes. With microarray technology, we identified 9 proapoptosis-related genes that were expressed at a significantly higher level in the testes of ob/ob mice than in the testes of the controls. Among these were members of the tumor necrosis factor receptor super family 1A and 5 (TNFR1 and 5) and peptidoglycan recognition proteins (associated with the extrinsic apoptotic pathway), and granzymes A and B, growth arrest and DNA damage inducible 45 gamma, sphingosine phosphate lyase 1, and caspase 9 (associated with the intrinsic apoptotic pathway). The results of the current study show that a leptin deficiency in mice is associated with impaired spermatogenesis, increased germ cell apoptosis, and up-regulated expression of proapoptotic genes within the testes.


Asunto(s)
Apoptosis/genética , Leptina/deficiencia , Leptina/genética , Espermatozoides/citología , Espermatozoides/fisiología , Testículo/anatomía & histología , Regiones no Traducidas 3'/genética , Animales , Peso Corporal , Regulación de la Expresión Génica , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos , Espermatogénesis , Testículo/citología
15.
Neurobiol Dis ; 19(3): 461-70, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16023588

RESUMEN

Neuregulins are a family of growth factors with potent neuroprotective properties. We recently demonstrated that neuregulin-1 blocked delayed neuronal death following focal ischemic stroke in the rat. Focal ischemia results in the release of pro-inflammatory cytokines that produce profound changes in gene expression and contribute to cell death associated with stroke. Inflammatory and stress mediators are involved in the pathogenesis of focal ischemic brain damage. We examined whether neuregulin-1 can influence inflammatory and stress gene expression in the rat brain following transient middle cerebral artery occlusion (MCAO). In this study, we compared gene expression profiles in animals treated with neuregulin-1beta (NRG-1) or vehicle followed by MCAO. We used the Affymetrix GeneChip system to analyze gene expression in focal ischemia of the rat brain. Several inflammatory and stress genes were significantly induced following MCAO compared to sham controls including heat shock protein-70 (HSP70), interleukin-1beta, and macrophage chemotattractant protein-1 (JE/MCP-1). Treatment with NRG-1 attenuated the expression of many of these genes by 50% or more. In vitro studies demonstrated that NRG-1 suppressed inflammatory gene expression in activated macrophages. NRG-1 also prevented neuronal death induced by oxygen-glucose deprivation in a rat neuroblastoma cell line, suggesting that NRG-1 may have both direct and indirect neuroprotective capacity. These results demonstrate that NRG-1 can regulate inflammatory and stress gene expression and may give new insight to the molecular mechanisms involved in the neuroprotective role of neuregulins in stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Expresión Génica , Infarto de la Arteria Cerebral Media/complicaciones , Neurregulina-1/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Células Cultivadas , Perfilación de la Expresión Génica , Hibridación in Situ , Inflamación/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Modelos Neurológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA