Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mar Drugs ; 21(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999382

RESUMEN

Liquid side-streams from food industries can be processed and used in food applications and contribute to reduce the environmental footprint of industries. The goal of this study was to evaluate the effectiveness and applicability of protein and phosphorus separation processes, namely microfiltration, ultrafiltration and flocculation, using protein-rich process waters with low (LS) and high (HS) salt content from the processing of salted cod (Gadus morhua). The application of different flocculants (chitosan lactate and Levasil RD442) were evaluated at different concentrations and maturation periods (0, 1 or 3 h). The results showed that different flocculation treatments resulted in different recoveries of the nutrients from LS and HS. Proteins in LS could be most efficiently recovered by using Levasil RD442 0.25% and no maturation period (51.4%), while phosphorus was most efficiently recovered when using Levasil RD442 1.23% and a maturation period of 1 h (34.7%). For HS, most of its protein was recovered using Levasil RD442 1.23% and a maturation period of 1 h (51.8%), while phosphorus was recovered the most using Levasil 1.23% and no maturation period (47.1%). The salt contents allowed interactions through intermolecular forces with Levasil RD442. The ultrafiltration method was effective on HS since it recovered higher percentages of nutrients in the retentate phase (57% of the protein and 46% of the phosphorus) compared to LS.


Asunto(s)
Quitosano , Ultrafiltración , Animales , Ultrafiltración/métodos , Cloruro de Sodio , Fósforo , Nutrientes
2.
Front Plant Sci ; 14: 1186537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377803

RESUMEN

The overall goal of this study was to provide solutions to innovative microalgae-based technology for wastewater remediation in a cold-water recirculating marine aquaculture system (RAS). This is based on the novel concept of integrated aquaculture systems in which fish nutrient-rich rearing water will be used for microalgae cultivation. The produced biomass can be used as fish feed, while the cleaned water can be reused, to create a highly eco-sustainable circular economy. Here, we tested three microalgae species Nannochloropis granulata (Ng), Phaeodactylum tricornutum (Pt), and Chlorella sp (Csp) for their ability to remove nitrogen and phosphate from the RAS wastewater and simultaneously produce high-value biomass, i.e., containing amino acids (AA), carotenoids, and polyunsaturated fatty acids (PUFAs). A high yield and value of biomass were achieved for all species in a two-phase cultivation strategy: i) a first phase using a medium optimized for best growth (f/2 14x, control); ii) a second "stress" phase using the RAS wastewater to enhance the production of high-value metabolites. Ng and Pt performed best in terms of biomass yield (i.e., 5-6 g of dry weight, DW.L-1) and efficient cleaning of the RAS wastewater from nitrite, nitrate, and phosphate (i.e., 100% removal). Csp produced about 3 g L-1 of DW and reduced efficiently only nitrate, and phosphate (i.e., about 76% and 100% removal, respectively). The biomass of all strains was rich in protein (30-40 % of DW) containing all the essential AA except Methionine. The biomass of all three species was also rich in PUFAs. Finally, all tested species are excellent sources of antioxidant carotenoids, including fucoxanthin (Pt), lutein (Ng and Csp) and ß-carotene (Csp). All tested species in our novel two-phase cultivation strategy thus showed great potential to treat marine RAS wastewater and provide sustainable alternatives to animal and plant proteins with extra added values.

3.
ACS Sustain Chem Eng ; 11(17): 6523-6534, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37152072

RESUMEN

A novel integrated process for recovery of protein-enriched biomasses from 5% presalting brines and spice brines of herring (Clupea harengus) was investigated by combining carrageenan- and/or acid-driven flocculation (F) plus dissolved air flotation (DAF). The F-DAF technique with carrageenan resulted in protein and lipid recoveries from 5% presalting brine of 78 and 38%, respectively. Without flocculation or with only acidification, protein and lipid recoveries in DAF were only 13 and 10%, respectively. Low protein and lipid recoveries, 8-12 and 1.8-8.2%, respectively, were also obtained when spice brine was subjected to only acidification and DAF. The protein content in dry biomasses from 5% presalting brine and spice brine was 36-43 and 13-16%, respectively. The corresponding lipid levels were 23-31 and 9-18%, respectively, with ash levels of 11-20 and 38-45%, respectively. Biomass proteins contained ≤45% essential amino acids, and the lipids had ≤16% long-chain n-3 polyunsaturated fatty acids. Freeze-dried spice brine biomasses were characterized by anchovy- and spice-related sensory attributes. 5% presalting brine biomasses were connected to fish and seafood attributes and showed gel forming capacity. The outlined F-DAF recovery system can thus recover both nutrients and interesting flavors from the herring process waters, which are currently lost from the food chain.

4.
ACS Omega ; 8(9): 8355-8365, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910945

RESUMEN

The seafood industry generates significant amounts of process waters which can generate value upon recovery of their nutrients. Process waters from the herring marination chain and cooking of mussels were here characterized in terms of crude composition, volatile compounds, and nutritional and potentially toxic elements. Protein and total fatty acid contents of herring refrigerated sea water (RSW) reached 3 and 0.14 g/L, respectively, while herring presalting brine (13%) reached 16.3 g/L protein and 0.77 g/L total fatty acid. Among three herring marination brines vinegar brine (VMB), spice brine (SPB), and salt brine (SMB), SPB reached the highest protein (39 g/L) and fatty acids (3.0 g/L), whereas SMB and VMB at the most had 14 and 21 g protein/L, respectively, and 0.6 and 9.9 g fatty acids/L, respectively. Essential amino acid (EAA) in marination brines accounted for up to 59% of total amino acid (TAA). From mussel processing, cooking juice had more protein (14-23 g/L) than the rest of the process waters, and in all water types, EAA reached up to 42% of TAA. For all process waters, the most abundant nutritional elements were Na, K, P, Ca, and Se. The content of all potentially toxic elements was mostly below LOD, except for As which ranged from 0.07 to 1.07 mg/kg among all tested waters. Our findings shed light on liquid seafood side streams as untapped resources of nutrients which can be valorized into food/feed products.

5.
Food Chem ; 412: 135585, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36736186

RESUMEN

The combined effects of isolation temperature (20, 30 and 40 °C) and pH (2.0-12.0) on yield, techno-functional properties, and beany flavor of pea protein isolates were investigated. Increasing pH from 2.0 to 9.5 and 11.0 increased yields from 37 % to 75 % and 79 %, respectively, at 20 °C. At a constant pH, increasing temperature from 20 to 40 °C did not increase protein recovery; rather, negatively affected the techno-functional properties such as protein solubility, foaming and gelation. Protein isolated at pH 11.0 (20 °C) provided a higher fat absorption, gelation capacity, gel hardness, cohesiveness, chewiness, and gumminess than at pH 9.5, due to higher protein denaturation as supported by their higher surface hydrophobicity. Volatile beany flavor marker hexanal was predominant in all isolates than the starting material, irrespective of isolation temperature, probably due to lipid oxidation. The results provide a basis for tuning the isolation process for producing pea protein isolates with desired techno-functional properties for meat analogue applications.


Asunto(s)
Fabaceae , Proteínas de Guisantes , Temperatura , Carne , Proteínas , Concentración de Iones de Hidrógeno
6.
Food Chem X ; 16: 100488, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36345506

RESUMEN

Weight distribution, proximate composition, fatty acids, amino acids, minerals and vitamins were investigated in five sorted cuts (head, backbone, viscera + belly flap, tail, fillet) emerging during filleting of spring and fall herring (Clupea harengus). The herring co-product cuts constituted âˆ¼ 60 % of the whole herring weight, with backbone and head dominating. Substantial amounts of lipids (5.8-17.6 % wet weight, ww) and proteins (12.8-19.2 % ww) were identified in the co-products, the former being higher in fall than in spring samples. Co-product cuts contained up to 43.1 % long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of total FA, absolute levels peaking in viscera + belly flap. All cuts contained high levels of essential amino acids (up to 43.3 %), nutritional minerals (e.g., iodine, selenium, calcium, and iron/heme-iron), and vitamins E, D, and B12. Co-products were, in many cases, more nutrient-rich than the fillet and could be excellent sources for both (functional) food and nutraceuticals.

7.
Food Chem ; 373(Pt B): 131523, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34801287

RESUMEN

Lipid oxidation in ice-stored sorted herring fractions (head, backbone, viscera + belly flap, tail, fillet) from spring and fall, and its association with endogenous prooxidants, antioxidants and lipid substrates were investigated. Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) had increased significantly in all fractions after 1 day, but for both seasons, the most rapid PV and TBARS development occurred in head, which also had highest hemoglobin (Hb) levels and lipoxygenases (LOX) activity. Viscera + belly flap was overall the most stable part, and also had the highest α-tocopherol content. Pearson correlation analyses across all five fractions confirmed a significant impact of Hb, LOX and α-tocopherol on the lipid oxidation susceptibility, while content of total iron, copper, lipids or polyunsaturated fatty acids provided no significant correlation. Overall, the study showed which pro-oxidants that should be inhibited or removed to succeed with value adding of herring filleting co-products and the fillet itself.


Asunto(s)
Peces , Alimentos Marinos , Animales , Antioxidantes , Lípidos , Alimentos Marinos/análisis , Estaciones del Año
8.
ACS Omega ; 6(46): 30960-30970, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34849440

RESUMEN

Shrimp boiling water (SBW) and shrimp peeling water (SPW), generated during shrimp processing, were characterized in terms of crude composition, volatile compounds, as well as nutritional and potentially toxic elements over a 13 month sampling period. The storage stability of both waters was also evaluated. Results showed that SBW contained on median 14.8 g/L protein and 2.2 g/L total fatty acids with up to 50% comprising eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Astaxanthin esters, which dominated the total astaxanthin, were 2.8 mg/L on median. SPW, on the other hand, contained on median 1.0 g/L of protein, 0.21 g/L of total fatty acids, and 1.2 mg/L astaxanthin esters. For both side-streams, essential amino acids were up to 50% of total amino acids. For SBW and SPW, the most abundant nutritional elements were Na, K, P, Ca, Cu, and Zn. The contents of all potentially toxic elements were below the detection limits, except for As. SBW was more stable at 4 °C compared to SPW as shown, e.g., by thiobarbituric acid reactive substances and relative changes in total volatile basic nitrogen. The extensive compositional mapping of SBW/SPW provides crucial knowledge necessary in the exploitation and value-adding of such side-streams into food or feed products.

9.
Food Funct ; 11(5): 4304-4313, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32363356

RESUMEN

The present study aimed to develop a fermented food (idli) with enhanced γ-aminobutyric acid (GABA) and angiotensin I-converting enzyme (ACE) inhibitory properties using a GABA-producing fungus. Aspergillus oryzae NSK fermented idli batter and GABA was maximized (451.7 mg kg-1) in 120 h. The ACE inhibitory, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging and nitric oxide radical scavenging activities increased to 41.8%, 1.9 and 0.6 µmol trolox equivalent antioxidant capacity (TEAC) per gram in 120 h, respectively. In contrast, phytic acid and trypsin inhibitor activities decreased to 3.01 g kg-1 and 30.8 mg kg-1, respectively. The systolic blood pressure of spontaneously hypertensive rats in the fermented idli diet group was lower than those fed a plain idli diet. Lipid peroxidation in the plain idli diet group was significantly higher, whereas superoxide dismutase and glutathione reductase activities were significantly lower. The expression of genes ET-1, HSP70, NF-κB and iNOS in the aorta of SHRs that received GABA-containing diets was down-regulated between 2.2 and 3.8 fold. The production of GABA-enriched foods can be a promising approach to lower the blood pressure of spontaneously hypertensive rats.


Asunto(s)
Aspergillus oryzae/metabolismo , Alimentos Fermentados , Hipertensión , Oryza , Phaseolus , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Animales , Antihipertensivos/metabolismo , Presión Sanguínea , Modelos Animales de Enfermedad , Fitoterapia , Ratas , Ratas Endogámicas SHR , Ácido gamma-Aminobutírico/metabolismo
10.
Food Chem ; 302: 125299, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437710

RESUMEN

Flocculation and sedimentation of a protein-rich biomass from shrimp boiling water (SBW) using food grade polysaccharides (carrageenan, alginate and carboxymethyl cellulose (CMC)) as flocculants was investigated at different pH-values. The effect of flocculant concentration on particle size and viscosity of SBW was also evaluated. Flocculation with carrageenan (0.45 g/L) at pH = 4 exhibited the most efficient protein sedimentation; protein concentration of the upper phase was here reduced by 77%, allowing 86% protein to be sedimented from SBW. Flocculation by alginate and CMC at pH = 4 showed 67% and 60% protein reduction of the upper phase at concentrations of 0.5 and 0.2 g/L, respectively. Contrary to alginate and CMC, carrageenan concentration affected the size distribution of flocs. Finally, carrageenan at 0.45 g/L and pH = 4 was successfully tested in a scaled up trial (5L) providing 78.5% protein recovery and a biomass with 75% protein on dry weight basis.


Asunto(s)
Proteínas de Peces/aislamiento & purificación , Manipulación de Alimentos/métodos , Pandalidae/química , Alginatos/química , Animales , Carboximetilcelulosa de Sodio/química , Carragenina/química , Floculación , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Viscosidad , Aguas Residuales/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-22927875

RESUMEN

Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC(50) value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC(50) value of 2.24 mg/mL), trypsin hydrolysate (IC(50) value of 2.28 mg/mL), papain hydrolysate (IC(50) value of 2.48 mg/mL), bromelain hydrolysate (IC(50) value of 4.21 mg/mL), and protamex hydrolysate (IC(50) value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC(50) values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.

12.
Int J Mol Sci ; 13(5): 5482-5497, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754309

RESUMEN

l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.


Asunto(s)
Microbiología de Alimentos , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Lactobacillus plantarum/metabolismo , Fermentación , Ácido Glutámico/aislamiento & purificación , Ácido Láctico/aislamiento & purificación , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Malasia , ARN Ribosómico 16S/genética
13.
N Biotechnol ; 28(6): 738-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21238617

RESUMEN

Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Lipasa/química , Lipasa/aislamiento & purificación , Aceite de Soja/química , Trioleína/química , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/biosíntesis , Entropía , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Lipasa/biosíntesis , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA