RESUMEN
Axon loss in the CNS is characteristic of many neurodegenerative diseases but the mechanisms of axon degeneration are poorly understood. In particular, we know little of the inflammatory response triggered by CNS axon degeneration with comparison to that provoked by death of the neuronal cell body. We show that Wallerian degeneration of the mouse optic nerve induces transcription of TGF-beta1 and TNF-alpha, but not pro-inflammatory cytokines IL-1beta and IL-6 and microglial activation. This atypical inflammatory response resembles macrophages that have phagocytosed apoptotic cells and prion-infected CNS. Significantly, peripheral endotoxin challenge after injury switched this profile by inducing IL-1beta, IL-6 transcripts, other inflammation-associated products and reducing neurofilament immunoreactivity. We propose that microglia are activated by Wallerian degeneration and persist in an atypical but "primed" state and can be switched by systemic inflammation to provoke a classical pro-inflammatory profile with potentially deleterious consequences.
Asunto(s)
Sistema Nervioso Central/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Degeneración Walleriana/patología , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Proteína C-Reactiva/metabolismo , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidor 1 de Activador Plasminogénico/farmacología , Polisacáridos/administración & dosificación , Componente Amiloide P Sérico/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
CD8 T cells are nature's foremost defense in encephalitis and brain tumors. Antigen-specific CD8 T cells need to enter the brain to exert their beneficial effects. On the other hand, traffic of CD8 T cells specific for neural antigen may trigger autoimmune diseases like multiple sclerosis. T cell traffic into the central nervous system is thought to occur when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen specificity, but studies have focused on CD4 T cells. Here, we show that selective traffic of antigen-specific CD8 T cells into the brain occurs in vivo and is dependent on luminal expression of major histocompatibility complex (MHC) class I by cerebral endothelium. After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 T cells only infiltrated the brain when and where their cognate antigen was present. This was independent of antigen presentation by perivascular macrophages. Marked reduction of antigen-specific CD8 T cell infiltration was observed after intravenous injection of blocking anti-MHC class I antibody. These results expose a hitherto unappreciated route by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implications for a variety of diseases in which antigen-specific CD8 T cell traffic into the brain is a beneficial or deleterious feature.