Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Metab ; 30(6): 1040-1054.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31523008

RESUMEN

Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondrial one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondrial unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.


Asunto(s)
ADN Mitocondrial/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción Activadores/metabolismo , Animales , Línea Celular , ADN Mitocondrial/genética , Escherichia coli , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/genética , Miopatías Mitocondriales/genética , Eliminación de Secuencia , Estrés Fisiológico/genética
2.
Neurology ; 87(22): 2290-2299, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27794108

RESUMEN

OBJECTIVE: To validate new mitochondrial myopathy serum biomarkers for diagnostic use. METHODS: We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions. RESULTS: We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p < 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p < 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p < 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions. CONCLUSIONS: S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Factor 15 de Diferenciación de Crecimiento/sangre , Enfermedades Mitocondriales/sangre , Adulto , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Enfermedades Mitocondriales/genética , Músculo Esquelético/metabolismo , Mutación , ARN de Hongos/sangre , Sensibilidad y Especificidad
3.
Cell Metab ; 23(4): 635-48, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26924217

RESUMEN

Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows tissue-specific induction of the mitochondrial folate cycle, purine metabolism, and imbalanced and increased dNTP pools, consistent with progressive mtDNA mutagenesis. IOSCA-TWINKLE is predicted to hydrolyze dNTPs, consistent with low dNTP pools and mtDNA depletion in the disease. MM muscle also modifies the cytoplasmic one-carbon cycle, transsulfuration, and methylation, as well as increases glucose uptake and its utilization for de novo serine and glutathione biosynthesis. Our evidence indicates that the mitochondrial replication machinery communicates with cytoplasmic dNTP pools and that upregulation of glutathione synthesis through glucose-driven de novo serine biosynthesis contributes to the metabolic stress response. These results are important for disorders with primary or secondary mtDNA instability and offer targets for metabolic therapy.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , Nucleótidos/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Adulto , Animales , Carbono/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Mitocondrial/genética , Femenino , Ácido Fólico/metabolismo , Glucosa/metabolismo , Glutatión/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/patología , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutación , Serina/metabolismo , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología
4.
Sci Transl Med ; 8(323): 323ra13, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26819196

RESUMEN

USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Factores Estimuladores hacia 5'/deficiencia , Factores Estimuladores hacia 5'/genética , Adulto , Anciano , Alelos , Animales , Aterosclerosis/metabolismo , Glucemia/metabolismo , Carbohidratos/química , Sistema Cardiovascular , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Estudios de Cohortes , Femenino , Silenciador del Gen , Glucosa/metabolismo , Humanos , Insulina/sangre , Insulina/metabolismo , Lípidos/química , Lipoproteína Lipasa/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Masculino , Síndrome Metabólico/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Consumo de Oxígeno , Fenotipo , Polimorfismo de Nucleótido Simple , Termogénesis , Triglicéridos/sangre , Triglicéridos/metabolismo
5.
EMBO Mol Med ; 6(6): 721-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24711540

RESUMEN

Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy.


Asunto(s)
Mitocondrias/efectos de los fármacos , Miopatías Mitocondriales/tratamiento farmacológico , Niacinamida/análogos & derivados , Complejo Vitamínico B/uso terapéutico , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Metabolismo Energético/efectos de los fármacos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Miopatías Mitocondriales/metabolismo , Miopatías Mitocondriales/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , NAD/metabolismo , Niacinamida/uso terapéutico , Compuestos de Piridinio , Sirtuina 1/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Cell Metab ; 15(1): 100-9, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225879

RESUMEN

Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.


Asunto(s)
ADN Mitocondrial/genética , Células Madre Hematopoyéticas/citología , Células-Madre Neurales/citología , Acetilcisteína/farmacología , Animales , Diferenciación Celular/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón , Eritropoyesis , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Linfopoyesis , Ratones , Ratones Mutantes , Enfermedades Mitocondriales/patología , Mutagénesis , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Oxidación-Reducción , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA