Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607934

RESUMEN

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Escherichia coli Uropatógena , Humanos , Animales , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Factores de Virulencia/genética , Escherichia coli Uropatógena/genética , Proteínas de Transporte de Membrana/genética , Virulencia
2.
Infect Immun ; 91(11): e0035523, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37850748

RESUMEN

Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to bacterial colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. Organ agar was also useful for identifying previously unknown links between biosynthetic genes and swarming motility. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.


Asunto(s)
Infecciones Urinarias , Animales , Ratones , Agar , Infecciones Urinarias/microbiología , Biblioteca de Genes , Proteus mirabilis
3.
Res Sq ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37293055

RESUMEN

Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.

4.
Microbiol Spectr ; 10(6): e0314222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377916

RESUMEN

Ordered transposon libraries are a valuable resource for many bacterial species, especially those with difficult methods for generating targeted genetic mutations. Here, we present the construction of an ordered transposon library for the bacterial urinary tract pathogen Proteus mirabilis strain HI4320. This library will facilitate future studies into P. mirabilis biology. For large experimental screens, it may be used to overcome bottleneck constraints and avoid biased outcomes resulting from gene length. For smaller studies, the library allows sidestepping the laborious construction of single targeted mutants. This library, containing 18,432 wells, was condensed into a smaller library containing 1,728 mutants. Each selected mutant had a single transposon insertion in an open reading frame, covering 45% of predicted genes encoded by P. mirabilis HI4320. This coverage was lower than expected and was due both to library wells with no mapped insertions and a surprisingly high proportion of mixed clones and multiple transposon insertion events. We offer recommendations for improving future library construction and suggestions for how to use this P. mirabilis library resource. IMPORTANCE Ordered libraries facilitate large genetic screens by guaranteeing high genomic coverage with a minimal number of mutants, and they can save time and effort by reducing the need to construct targeted mutations. This resource is now available for P. mirabilis, a common and complicating agent of catheter-associated urinary tract infection. We also present obstacles encountered during library construction with the goal to aid others who would like to construct ordered transposon libraries in other species.


Asunto(s)
Infecciones por Proteus , Infecciones Urinarias , Sistema Urinario , Humanos , Elementos Transponibles de ADN , Proteus mirabilis/genética , Infecciones Urinarias/microbiología , Biblioteca de Genes , Infecciones por Proteus/genética , Infecciones por Proteus/microbiología
5.
PLoS Pathog ; 17(3): e1009376, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720976

RESUMEN

Hypervirulent K. pneumoniae (hvKp) is a distinct pathotype that causes invasive community-acquired infections in healthy individuals. Hypermucoviscosity (hmv) is a major phenotype associated with hvKp characterized by copious capsule production and poor sedimentation. Dissecting the individual functions of CPS production and hmv in hvKp has been hindered by the conflation of these two properties. Although hmv requires capsular polysaccharide (CPS) biosynthesis, other cellular factors may also be required and some fitness phenotypes ascribed to CPS may be distinctly attributed to hmv. To address this challenge, we systematically identified genes that impact capsule and hmv. We generated a condensed, ordered transposon library in hypervirulent strain KPPR1, then evaluated the CPS production and hmv phenotypes of the 3,733 transposon mutants, representing 72% of all open reading frames in the genome. We employed forward and reverse genetic screens to evaluate effects of novel and known genes on CPS biosynthesis and hmv. These screens expand our understanding of core genes that coordinate CPS biosynthesis and hmv, as well as identify central metabolism genes that distinctly impact CPS biosynthesis or hmv, specifically those related to purine metabolism, pyruvate metabolism and the TCA cycle. Six representative mutants, with varying effect on CPS biosynthesis and hmv, were evaluated for their impact on CPS thickness, serum resistance, host cell association, and fitness in a murine model of disseminating pneumonia. Altogether, these data demonstrate that hmv requires both CPS biosynthesis and other cellular factors, and that hmv and CPS may serve distinct functions during pathogenesis. The integration of hmv and CPS to the metabolic status of the cell suggests that hvKp may require certain nutrients to specifically cause deep tissue infections.


Asunto(s)
Cápsulas Bacterianas/fisiología , Aptitud Genética/fisiología , Infecciones por Klebsiella , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Animales , Genes Sobrepuestos , Humanos , Ratones , Virulencia/genética , Viscosidad
6.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345645

RESUMEN

Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship.IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract.


Asunto(s)
Administración Intranasal , Proteínas de Escherichia coli/inmunología , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/inmunología , Vacunas/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Vías de Administración de Medicamentos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/terapia , Femenino , Humanos , Inmunización/métodos , Ratones , Receptores de Superficie Celular/inmunología , Infecciones Urinarias/microbiología , Infecciones Urinarias/terapia , Escherichia coli Uropatógena/patogenicidad , Vacunación/métodos , Vacunas/administración & dosificación
7.
Methods Mol Biol ; 2021: 297-337, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309514

RESUMEN

Transposon sequencing (Tn-seq) is a technique that combines quantitative next-generation sequencing and a saturating transposon mutant library for an organism of interest, and ultimately allows for quantitation of the relative abundance of all of the mutants under a given condition, such as during experimental infection. The massively parallel sequencing capabilities of this technique provide a significant advance over more traditional methods of screening transposon mutant pools or individually determining the fitness contribution of genes of interest. Here, we describe a method for generating a genome-saturating transposon mutant library in Proteus mirabilis, determining the appropriate number of mutants for inoculation in an experimental infection model, preparing transposon insertion junctions for Illumina sequencing, and downstream analysis of mapped DNA sequencing reads for estimation of the contribution of each gene in the genome to fitness during infection.


Asunto(s)
Elementos Transponibles de ADN , Proteus mirabilis/genética , Sistema Urinario/microbiología , Animales , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Mutagénesis Insercional , Proteus mirabilis/patogenicidad , Secuenciación Completa del Genoma/métodos
8.
PLoS Pathog ; 15(4): e1007653, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31009518

RESUMEN

The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.


Asunto(s)
Amoníaco/metabolismo , Arginina/metabolismo , Bacteriemia/microbiología , Poliaminas/metabolismo , Infecciones por Proteus/microbiología , Proteus mirabilis/crecimiento & desarrollo , Factores de Virulencia/metabolismo , Animales , Bacteriemia/genética , Bacteriemia/metabolismo , Elementos Transponibles de ADN , Femenino , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos CBA , Fenotipo , Infecciones por Proteus/genética , Infecciones por Proteus/metabolismo , Translocación Genética , Factores de Virulencia/genética
9.
mSphere ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29769381

RESUMEN

Uropathogenic Escherichia coli strains utilize a variety of adherence factors that assist in colonization of the host urinary tract. TosA (type one secretion A) is a nonfimbrial adhesin that is predominately expressed during murine urinary tract infection (UTI), binds to kidney epithelial cells, and promotes survival during invasive infections. The tosRCBDAEF operon encodes the secretory machinery necessary for TosA localization to the E. coli cell surface, as well as the transcriptional regulator TosR. TosR binds upstream of the tos operon and in a concentration-dependent manner either induces or represses tosA expression. TosR is a member of the PapB family of fimbrial regulators that can participate in cross talk between fimbrial operons. TosR also binds upstream of the pap operon and suppresses PapA production. However, the scope of TosR-mediated cross talk is understudied and may be underestimated. To quantify the global effects of TosR-mediated regulation on the E. coli CFT073 genome, we induced expression of tosR, collected mRNA, and performed high-throughput RNA sequencing (RNA-Seq). These findings show that production of TosR affected the expression of genes involved with adhesins, including P, F1C, and Auf fimbriae, nitrate-nitrite transport, microcin secretion, and biofilm formation.IMPORTANCE Uropathogenic E. coli strains cause the majority of UTIs, which are the second most common bacterial infection in humans. During a UTI, bacteria adhere to cells within the urinary tract, using a number of different fimbrial and nonfimbrial adhesins. Biofilms can also develop on the surfaces of catheters, resulting in complications such as blockage. In this work, we further characterized the regulator TosR, which links both adhesin production and biofilm formation and likely plays a crucial function during UTI and disseminated infection.


Asunto(s)
Adhesinas de Escherichia coli/biosíntesis , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología , Eliminación de Gen , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Prueba de Complementación Genética , Redes y Vías Metabólicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulón
10.
mBio ; 9(2)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511075

RESUMEN

Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization.


Asunto(s)
Infecciones por Escherichia coli/genética , Infecciones Urinarias/genética , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Humanos , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA