Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Adv Exp Med Biol ; 736: 261-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22161334

RESUMEN

Tumor development is characterized by a compromised balance between cell life and death decision mechanisms, which are tightly regulated in normal cells. Understanding this process provides insights for developing new treatments for fighting with cancer. We present a study of a mathematical model describing cellular choice between survival and two alternative cell death modalities: apoptosis and necrosis. The model is implemented in discrete modeling formalism and allows to predict probabilities of having a particular cellular phenotype in response to engagement of cell death receptors. Using an original parameter sensitivity analysis developed for discrete dynamic systems, we determine variables that appear to be critical in the cellular fate decision and discuss how they are exploited by existing cancer therapies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Modelos Biológicos , Neoplasias/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Simulación por Computador , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Humanos , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Necrosis , Neoplasias/genética , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
2.
PLoS Comput Biol ; 6(3): e1000702, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221256

RESUMEN

Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFkappaB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments.


Asunto(s)
Apoptosis/fisiología , Modelos Biológicos , Receptores de Muerte Celular/metabolismo , Animales , Simulación por Computador , Humanos
3.
J Biol Chem ; 285(11): 8463-71, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20061377

RESUMEN

The NRF2 transcription factor regulates a major environmental and oxidative stress response. NRF2 is itself negatively regulated by KEAP1, the adaptor of a Cul3-ubiquitin ligase complex that marks NRF2 for proteasomal degradation by ubiquitination. Electrophilic compounds activate NRF2 primarily by inhibiting KEAP1-dependent NRF2 degradation, through alkylation of specific cysteines. We have examined the impact on KEAP1 of reactive oxygen and nitrogen species, which are also NRF2 inducers. We found that in untreated cells, a fraction of KEAP1 carried a long range disulfide linking Cys(226) and Cys(613). Exposing cells to hydrogen peroxide, to the nitric oxide donor spermine NONOate, to hypochlorous acid, or to S-nitrosocysteine further increased this disulfide and promoted formation of a disulfide linking two KEAP1 molecules via Cys(151). None of these oxidants, except S-nitrocysteine, caused KEAP1 S-nitrosylation. A cysteine mutant preventing KEAP1 intermolecular disulfide formation also prevented NRF2 stabilization in response to oxidants, whereas those preventing intramolecular disulfide formation were functionally silent. Further, simultaneously inactivating the thioredoxin and glutathione pathways led both to major constitutive KEAP1 oxidation and NRF2 stabilization. We propose that KEAP1 intermolecular disulfide formation via Cys(151) underlies the activation of NRF2 by reactive oxygen and nitrogen species.


Asunto(s)
Disulfuros/metabolismo , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes/farmacología , Transducción de Señal/fisiología , Cisteína/metabolismo , Glutatión/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Óxido Nítrico/metabolismo , Nitrosación/efectos de los fármacos , Nitrosación/fisiología , Oxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/metabolismo
4.
Antioxid Redox Signal ; 10(9): 1565-76, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18498222

RESUMEN

Thiol-based peroxidases consist of the peroxiredoxins (Prx) and the related glutathione peroxidase (GPx)-like enzymes. Their catalytic function is to reduce peroxides by using the reactivity of the cysteine residue, and their presumed primary physiologic role is to protect living organisms from peroxide toxicity. However, as peroxide-metabolizing enzymes, they also regulate hydrogen peroxide (H2O2) signaling. We review here enzymatic and biochemical attributes of thiol peroxidases that specify both distinctive peroxide-scavenging functions and the property of regulating H2O2 signaling. We then discuss possible thiol peroxidase physiologic functions, based on selected observations made in microorganisms and mammals.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Peroxidasas/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/metabolismo , Animales , Dimerización , Glutatión Peroxidasa/química , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Peróxido de Hidrógeno/química , Modelos Biológicos , Peroxidasas/química , Peroxidasas/genética , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
5.
J Biol Chem ; 282(50): 36199-205, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17921138

RESUMEN

Reactive oxygen species and nitric oxide (NO) are capable of both mediating redox-sensitive signal transduction and eliciting cell injury. The interplay between these messengers is quite complex, and intersection of their signaling pathways as well as regulation of their fluxes requires tight control. In this regard, peroxiredoxins (Prxs), a recently identified family of six thiol peroxidases, are central because they reduce H2O2, organic peroxides, and peroxynitrite. Here we provide evidence that endogenously produced NO participates in protection of murine primary macrophages against oxidative and nitrosative stress by inducing Prx I and VI expression at mRNA and protein levels. We also show that NO prevented the sulfinylation-dependent inactivation of 2-Cys Prxs, a reversible overoxidation that controls H2O2 signaling. In addition, studies using macrophages from sulfiredoxin (Srx)-deficient mice indicated that regeneration of 2-Cys Prxs to the active form was dependent on Srx. Last, we show that NO increased Srx expression and hastened Srx-dependent recovery of 2-Cys Prxs. We therefore propose that modulation by NO of Prx expression and redox state, as well as up-regulation of Srx expression, constitutes a novel pathway that contributes to antioxidant response and control of H2O2-mediated signal transduction in mammals.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Macrófagos/enzimología , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Peroxiredoxina VI/biosíntesis , Peroxirredoxinas/biosíntesis , Transducción de Señal/fisiología , Animales , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Óxido Nítrico/inmunología , Oxidantes/inmunología , Oxidantes/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxiredoxina VI/genética , Peroxiredoxina VI/inmunología , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Ácido Peroxinitroso/inmunología , Ácido Peroxinitroso/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA