Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568972

RESUMEN

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Asunto(s)
Saccharomyces cerevisiae , Esteroles , Esteroles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteína Niemann-Pick C1/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
FEBS Lett ; 596(2): 160-179, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34897668

RESUMEN

Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.


Asunto(s)
Saccharomyces cerevisiae
3.
Protein J ; 38(4): 377-388, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31401776

RESUMEN

The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela , Arginina/fisiología , Bacillus subtilis , Membrana Celular/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/fisiología , Pliegue de Proteína , Señales de Clasificación de Proteína/fisiología , Canales de Translocación SEC/química , Canales de Translocación SEC/fisiología , Sistema de Translocación de Arginina Gemela/química , Sistema de Translocación de Arginina Gemela/fisiología
4.
EcoSal Plus ; 8(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31215506

RESUMEN

The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.


Asunto(s)
Arginina/metabolismo , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Productos del Gen tat/metabolismo , Transporte de Proteínas , Bacillus subtilis/genética , Escherichia coli/genética , Productos del Gen tat/genética , Redes y Vías Metabólicas , Señales de Clasificación de Proteína
5.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 202-208, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27984091

RESUMEN

The Tat system preferentially transports correctly folded proteins across the bacterial membrane although little is known of the proofreading mechanism. Most research has focused on TatABC systems from Gram-negative bacteria, especially Escherichia coli, and much less is known of the TatAC-type systems from Gram-positive organisms. We have previously shown that the Bacillus subtilis TatAdCd system is functional in an E. coli tat null background and able to transport TorA-GFP and native TorA (TMAO reductase); here, we examined its ability to transport other proteins bearing a TorA signal sequence. We show that whereas E. coli TatABC transports a wide range of biotherapeutics including human growth hormone, interferon α2b, a VH domain protein and 2 different scFvs, TatAdCd transports the scFvs but completely rejects the other proteins. The system also rejects two native E. coli substrates, NrfC and FhuD. Moreover, we have shown that TatABC will transport a wide range of folded scFv variants with the surface altered to incorporate multiple salt bridges, charged residues (5 glutamate, lysine or arginine), or hydrophobic residues (up to 6 leucines). In contrast, TatAdCd completely rejects many of these variants including those with 5 or 6 added Leu residues. The combined data show that the TatABC and TatAdCd systems have very different substrate selectivities, with the TatAdCd system displaying an extreme level of selectivity when compared to the E. coli system. The data also provide a preliminary suggestion that TatAdCd may not tolerate substrates that contain surface domains with a level of hydrophobicity above a certain threshold.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Anticuerpos de Cadena Única/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hormona de Crecimiento Humana/química , Hormona de Crecimiento Humana/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Interferón alfa-2 , Interferón-alfa/química , Interferón-alfa/metabolismo , Proteínas de Transporte de Membrana/genética , Oxidorreductasas N-Desmetilantes/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Electricidad Estática , Especificidad por Sustrato
6.
Biochim Biophys Acta ; 1857(3): 266-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26341016

RESUMEN

Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen. The involvement of Sec-, Tat- and signal recognition particle- (SRP)-dependent protein targeting pathways is discussed, together with the possible involvement of a so-called 'spontaneous' pathway for the insertion of membrane proteins, previously characterised for chloroplast thylakoid membrane proteins. An intriguing aspect of cyanobacterial cell biology is that most contain only a single set of genes encoding Sec, Tat and SRP components, yet the proteomes of the plasma and thylakoid membranes are very different. The implications for protein sorting mechanisms are considered. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Tilacoides/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/genética , Transporte de Proteínas/fisiología , Tilacoides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA