Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanoscale Horiz ; 8(11): 1588-1594, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37691551

RESUMEN

The design of nanomaterial-based nucleic acid formulations is one of the biggest endeavours in the search for clinically applicable gene delivery systems. Biopolymers represent a promising subclass of gene carriers due to their physicochemical properties, biodegradability and biocompatibility. By modifying melanin-like polydopamine nanoparticles with poly-L-arginine and poly-L-histidine blends, we obtained a novel catch-and-release gene delivery system for efficient trafficking of pDNA to human cells. A synergistic interplay of nanoparticle-bound poly-L-arginine and poly-L-histidine was observed and evaluated for pDNA binding affinity, cell viability, gene release and transfection. Although the functionalisation with poly-L-arginine was crucial for pDNA binding, the resulting nanocarriers failed to release pDNA intracellularly, resulting in limited protein expression. However, optimal pDNA release was achieved through the co-formulation with poly-L-histidine, essential for pDNA release. This effect enabled the design of gene delivery systems, which were comparable to Lipofectamine in terms of transfection efficacy and the catch-and-release surface modification strategy can be translated to other nanocarriers and surfaces.

2.
Sci Rep ; 12(1): 6580, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449377

RESUMEN

The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.


Asunto(s)
COVID-19 , Fotoquimioterapia , Bacterias , Escherichia coli , Humanos , Luz , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/farmacología , Riboflavina/farmacología , SARS-CoV-2
3.
Nanoscale ; 14(17): 6656-6669, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35438701

RESUMEN

Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Histocompatibilidad , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Polímeros , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Angew Chem Int Ed Engl ; 60(24): 13225-13243, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32893932

RESUMEN

Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.


Asunto(s)
Biopolímeros/química , Vacunas de ADN/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Humanos , Liposomas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Vacunas de ADN/química , Vacunas de ADN/inmunología , Virosis/prevención & control
5.
Chem Commun (Camb) ; 55(66): 9877-9880, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31364618

RESUMEN

We introduce a chemically λ-orthogonal bichromophore triggered simply by different colours of light, enabling two different photochemical reactions in one molecule. Uniquely, the short wavelength (λ = 314 nm) does not trigger the red-shifted reaction system (λ = 416 nm), opening possibilities for the light controlled gating of specific molecular sites independent of wavelength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA