Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 10(1): 21144, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273600

RESUMEN

Chloroplast biotechnology is a route for novel crop metabolic engineering. The potential bio-confinement of transgenes, the high protein expression and the possibility to organize genes into operons represent considerable advantages that make chloroplasts valuable targets in agricultural biotechnology. In the last 3 decades, chloroplast genomes from a few economically important crops have been successfully transformed. The main bottlenecks that prevent efficient transformation in a greater number of crops include the dearth of proven selectable marker gene-selection combinations and tissue culture methods for efficient regeneration of transplastomic plants. The prospects of increasing organelle size are attractive from several perspectives, including an increase in the surface area of potential targets. As a proof-of-concept, we generated Solanum tuberosum (potato) macro-chloroplast lines overexpressing the tubulin-like GTPase protein gene FtsZ1 from Arabidopsis thaliana. Macro-chloroplast lines exhibited delayed growth at anthesis; however, at the time of harvest there was no significant difference in height between macro-chloroplast and wild-type lines. Macro-chloroplasts were successfully transformed by biolistic DNA-delivery and efficiently regenerated into homoplasmic transplastomic lines. We also demonstrated that macro-chloroplasts accumulate the same amount of heterologous protein than wild-type organelles, confirming efficient usage in plastid engineering. Advantages and limitations of using enlarge compartments in chloroplast biotechnology are discussed.


Asunto(s)
Biotecnología , Cloroplastos/genética , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Biolística/métodos , Productos Agrícolas/crecimiento & desarrollo , Microscopía Fluorescente , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Transformación Genética
2.
Plant Cell Rep ; 38(10): 1329-1345, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31396683

RESUMEN

KEY MESSAGE: A novel soybean cell culture was developed, establishing a reliable and rapid promoter assay to enable high-throughput automated screening in soybean protoplasts relevant to shoot tissues in whole plants. Transient reporter gene assays can be valuable to rapidly estimate expression characteristics of heterologous promoters. The challenge for maximizing the value of such screens is to combine relevant cells or tissues with methods that can be scaled for high-throughput screening, especially for crop-rather than model species. We developed a robust and novel soybean cell suspension culture derived from leaf-derived callus for protoplast production: a platform for promoter screening. The protoplasts were transfected with promoter-reporter constructs, of which were chosen and validated against known promoter expression profiles from tissue-derived protoplasts (leaves, stems, and immature cotyledons) and gene expression data from plants. The cell culture reliably produced 2.82 ± 0.94 × 108 protoplasts/g fresh culture mass with a transfection efficiency of 31.06 ± 7.69% at 48 h post-incubation. The promoter-reporter gene DNA expression levels of transfected cell culture-derived protoplasts were most similar to that of leaf- and stem-derived protoplasts (correlation coefficient of 0.99 and 0.96, respectively) harboring the same constructs. Cell culture expression was also significantly correlated to endogenous promoter-gene expression in leaf tissues as measured by qRT-PCR (correlation coefficient of 0.80). Using the manual protocols that produced these results, we performed early stage experiments to automate protoplast transformation on a robotic system. After optimizing the protocol, we achieved up to 29% transformation efficiency using our robotic system. We conclude that the soybean cell culture-to-protoplast transformation screen is amenable to automate promoter and gene screens in soybean that could be used to accelerate discoveries relevant for crop improvement. Key features of the system include low-cost, facile protoplast isolation, and transformation for soybean shoot tissue-relevant molecular screening.


Asunto(s)
Fabaceae/metabolismo , Glycine max/metabolismo , Regiones Promotoras Genéticas/genética , Fabaceae/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Robótica , Glycine max/genética , Transformación Genética/genética
3.
J Exp Bot ; 70(20): 5673-5686, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31419288

RESUMEN

Polyploidization is a significant source of genomic and organism diversification during plant evolution, and leads to substantial alterations in plant phenotypes and natural fitness. To help understand the phenotypic and molecular impacts of autopolyploidization, we conducted epigenetic and full-transcriptomic analyses of a synthesized autopolyploid accession of switchgrass (Panicum virgatum) in order to interpret the molecular and phenotypic changes. We found that mCHH levels were decreased in both genic and transposable element (TE) regions, and that TE methylation near genes was decreased as well. Among 142 differentially expressed genes involved in cell division, cellulose biosynthesis, auxin response, growth, and reproduction processes, 75 of them were modified by 122 differentially methylated regions, 10 miRNAs, and 15 siRNAs. In addition, up-regulated PvTOE1 and suppressed PvFT probably contribute to later flowering time of the autopolyploid. The expression changes were probably associated with modification of nearby methylation sites and siRNAs. We also experimentally demonstrated that expression levels of PvFT and PvTOE1 were regulated by DNA methylation, supporting the link between alterations in methylation induced by polyploidization and the phenotypic changes that were observed. Collectively, our results show epigenetic modifications in synthetic autopolyploid switchgrass for the first time, and support the hypothesis that polyploidization-induced methylation is an important cause of phenotypic alterations and is potentially important for plant evolution and improved fitness.


Asunto(s)
Epigenoma/genética , Panicum/genética , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética
4.
Plant Physiol ; 179(3): 943-957, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679266

RESUMEN

Plant synthetic biology is a rapidly evolving field with new tools constantly emerging to drive innovation. Of particular interest is the application of synthetic biology to chloroplast biotechnology to generate plants capable of producing new metabolites, vaccines, biofuels, and high-value chemicals. Progress made in the assembly of large DNA molecules, composing multiple transcriptional units, has significantly aided in the ability to rapidly construct novel vectors for genetic engineering. In particular, Golden Gate assembly has provided a facile molecular tool for standardized assembly of synthetic genetic elements into larger DNA constructs. In this work, a complete modular chloroplast cloning system, MoChlo, was developed and validated for fast and flexible chloroplast engineering in plants. A library of 128 standardized chloroplast-specific parts (47 promoters, 38 5' untranslated regions [5'UTRs], nine promoter:5'UTR fusions, 10 3'UTRs, 14 genes of interest, and 10 chloroplast-specific destination vectors) were mined from the literature and modified for use in MoChlo assembly, along with chloroplast-specific destination vectors. The strategy was validated by assembling synthetic operons of various sizes and determining the efficiency of assembly. This method was successfully used to generate chloroplast transformation vectors containing up to seven transcriptional units in a single vector (∼10.6-kb synthetic operon). To enable researchers with limited resources to engage in chloroplast biotechnology, and to accelerate progress in the field, the entire kit, as described, is available through Addgene at minimal cost. Thus, the MoChlo kit represents a valuable tool for fast and flexible design of heterologous metabolic pathways for plastid metabolic engineering.


Asunto(s)
Cloroplastos/metabolismo , Clonación Molecular/métodos , Ingeniería Metabólica/métodos , Biotecnología/métodos , Cloroplastos/genética , Vectores Genéticos , Redes y Vías Metabólicas , Regiones Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Biología Sintética , Transformación Genética
5.
Plant Biotechnol J ; 17(3): 580-593, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30133139

RESUMEN

Cell wall recalcitrance is the major challenge to improving saccharification efficiency in converting lignocellulose into biofuels. However, information regarding the transcriptional regulation of secondary cell wall biogenesis remains poor in switchgrass (Panicum virgatum), which has been selected as a biofuel crop in the United States. In this study, we present a combination of computational and experimental approaches to develop gene regulatory networks for lignin formation in switchgrass. To screen transcription factors (TFs) involved in lignin biosynthesis, we developed a modified method to perform co-expression network analysis using 14 lignin biosynthesis genes as bait (target) genes. The switchgrass lignin co-expression network was further extended by adding 14 TFs identified in this study, and seven TFs identified in previous studies, as bait genes. Six TFs (PvMYB58/63, PvMYB42/85, PvMYB4, PvWRKY12, PvSND2 and PvSWN2) were targeted to generate overexpressing and/or down-regulated transgenic switchgrass lines. The alteration of lignin content, cell wall composition and/or plant growth in the transgenic plants supported the role of the TFs in controlling secondary wall formation. RNA-seq analysis of four of the transgenic switchgrass lines revealed downstream target genes of the secondary wall-related TFs and crosstalk with other biological pathways. In vitro transactivation assays further confirmed the regulation of specific lignin pathway genes by four of the TFs. Our meta-analysis provides a hierarchical network of TFs and their potential target genes for future manipulation of secondary cell wall formation for lignin modification in switchgrass.


Asunto(s)
Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Lignina/biosíntesis , Panicum/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Panicum/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
6.
Biotechnol Biofuels ; 11: 208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30061930

RESUMEN

BACKGROUND: Understanding the DNA methylome and its relationship with non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is essential for elucidating the molecular mechanisms underlying key biological processes in plants. Few studies have examined the functional roles of the DNA methylome in grass species with highly heterozygous polyploid genomes. RESULTS: We performed genome-wide DNA methylation profiling in the tetraploid switchgrass (Panicum virgatum L.) cultivar 'Alamo' using bisulfite sequencing. Single-base-resolution methylation patterns were observed in switchgrass leaf and root tissues, which allowed for characterization of the relationship between DNA methylation and mRNA, miRNA, and lncRNA populations. The results of this study revealed that siRNAs positively regulate DNA methylation of the mCHH sites surrounding genes, and that DNA methylation interferes with gene and lncRNA expression in switchgrass. Ninety-six genes covered by differentially methylated regions (DMRs) were annotated by GO analysis as being involved in stimulus-related processes. Functionally, 82% (79/96) of these genes were found to be hypomethylated in switchgrass root tissue. Sequencing analysis of lncRNAs identified two lncRNAs that are potential precursors of miRNAs, which are predicted to target genes that function in cellulose biosynthesis, stress regulation, and stem and root development. CONCLUSIONS: This study characterized the DNA methylome in switchgrass and elucidated its relevance to gene and non-coding RNAs. These results provide valuable genomic resources and references that will aid further epigenetic research in this important biofuel crop.

7.
BMC Genomics ; 17(1): 892, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821048

RESUMEN

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. RESULTS: In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated. CONCLUSIONS: Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.


Asunto(s)
Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Genes de Plantas , Estudios de Asociación Genética , Panicum/genética , Alelos , Secuencia de Aminoácidos , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Predisposición Genética a la Enfermedad , Genoma de Planta , Genómica/métodos , Panicum/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Posición Específica de Matrices de Puntuación , Dominios y Motivos de Interacción de Proteínas/genética , Reproducibilidad de los Resultados
8.
Front Plant Sci ; 7: 496, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148320

RESUMEN

Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa "Yaan" and H. altissima "1110." Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for "Yaan" and "1110," respectively. In addition, a total of 86,731 "Yaan" and 48,645 "1110" unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11-87.04%) of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.

9.
Funct Integr Genomics ; 14(1): 75-83, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24132512

RESUMEN

Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating gene expression.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , MicroARNs/genética , Nanopartículas/toxicidad , Nicotiana/efectos de los fármacos , Nicotiana/genética , Titanio/toxicidad , Germinación/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/crecimiento & desarrollo
10.
Gene ; 493(2): 253-9, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22146318

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species.


Asunto(s)
Asteraceae/genética , Etiquetas de Secuencia Expresada , MicroARNs/análisis , Secuencia de Bases , Carthamus tinctorius/genética , Secuencia Conservada , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Helianthus/genética , Datos de Secuencia Molecular , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Mol Biotechnol ; 49(2): 159-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21359858

RESUMEN

Drought and salinity stresses significantly altered microRNA (miRNA) expression in a dose-dependent manner in tobacco. Salinity stress changed the miRNA expression levels from a 6.86-fold down-regulation to a 616.57-fold up-regulation. Alternatively, miRNAs were down-regulated by 2.68-fold and up-regulated 2810-fold under drought conditions. miR395 was most sensitive to both stresses and was up-regulated by 616 and 2810-folds by 1.00% PEG and 0.171 M NaCl, respectively. Salinity and drought stresses also changed the expression of protein-coding genes [alcohol dehydrogenase (ADH) and alcohol peroxidase (APX)]. The results suggest that miRNAs may play an important role in plant response to environmental abiotic stresses. Further investigation of miRNA-mediated gene regulation may elucidate the molecular mechanism of plant tolerance to abiotic stresses and has the potential to create a miRNA-based biotechnology for improving plant tolerance to drought and salinity stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , MicroARNs/metabolismo , Nicotiana/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Deshidratación/genética , Deshidratación/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , MicroARNs/genética , Polietilenglicoles/farmacología , Plantones , Nicotiana/crecimiento & desarrollo , Nicotiana/fisiología
12.
Gene ; 473(1): 8-22, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20933063

RESUMEN

MicroRNAs (miRNAs) are recognized as a class of important post-transcriptional expression regulators that act on their target genes by degradation of target mRNAs or by inhibition of target protein translation. Compared with the current numbers of identified miRNAs for other species in the plant kingdom, a large number of potential miRNAs remains to be identified in potato. In this study, using a newly modified comparative genome strategy, a total of 202 potential potato miRNAs were identified, which belong to 78 families. miR162, miR167, and miR396 are highly expressed in all tested organs. miR372 is highly expressed in flowers. A total of 1094 miRNA targets were predicted and some of them encode transcription factors as well as genes that function in stress response, signal transduction, and a variety of other metabolic processes. Gene ontology (GO) analysis implicates that these targets are involved in 545 biological processes. Of those processes, 28 are related to potato defense mechanisms against bacteria, viruses, and fungi, the metabolism of molecules such as carbon, sucrose, starch, and lipid, and the development of primary and lateral roots. Pathway enrichment analysis, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), demonstrates that the identified miRNAs participated in 98 metabolism networks, some of which include sucrose metabolism, fatty acid metabolism, amino acid metabolism, carbon fixation, and the biosynthesis of plant hormones.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Secuencia de Bases , Secuencia Conservada/genética , Etiquetas de Secuencia Expresada , Datos de Secuencia Molecular , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Solanum tuberosum/microbiología , Almidón/genética , Almidón/metabolismo , Factores de Transcripción/genética
13.
Methods Mol Biol ; 678: 13-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20931369

RESUMEN

microRNAs (miRNAs) are a new class of small endogenous noncoding regulatory RNAs, which play an important function in plant growth, development, phase change, and response to environmental stress. Identifying miRNAs is the first step for investigating miRNA-mediated gene regulation and miRNA function. In this chapter, we describe a comprehensive comparative genomics-based expressed sequence tag (EST) analysis for identifying miRNAs from a wide range of plant species. EST analysis is based on the conservation of miRNA sequences and the stem-loop hairpin secondary structures of miRNAs. In this method, potential miRNAs will first be identified by EST analysis followed by confirmation using TaqMan(®) MicroRNA qRT-PCR. This method is simple and reliable with high efficiency. This method has also been widely adopted by many scientists around the world and several hundreds of miRNAs have been identified in many plant species using this method.


Asunto(s)
Etiquetas de Secuencia Expresada , MicroARNs/genética , ARN de Planta/genética , Bases de Datos Genéticas , Modelos Teóricos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Planta ; 232(6): 1289-308, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20803216

RESUMEN

microRNAs (miRNAs) are a recently discovered class of small (~21 nt) endogenous gene regulators that have been shown to play an important role in plant growth and development by aiding in organ maturation, hormone signaling, tissue differentiation, and plant tolerance to environmental stress. Since a list of miRNAs has never been generated for tobacco, we employed genome survey sequence analysis to computationally identify 259 potentially conserved tobacco miRNAs, belonging to 65 families, and validated 11 of these miRNAs using qRT-PCR. The 65 miRNA families were dramatically different in size. miRNA precursor (pre-miRNA) sequence analysis showed that tobacco pre-miRNAs greatly varied from 45 to 635 nt in length with an average of 141 ± 108 nt. We were also able to determine the presence of antisense miRNAs as well as miRNA clusters in tobacco. Using previously established protocols, a total of 1,225 potential target genes were predicted for the newly identified tobacco miRNAs. These target genes include transcription factors, DNA replication proteins, metabolic enzymes, as well as other gene targets necessary for proper plant maturation. The results of this study show that conserved miRNAs exist in tobacco and suggest that these miRNAs may play an important role in tobacco growth and development.


Asunto(s)
Genes de Plantas , MicroARNs/genética , Nicotiana/genética , Secuencia de Bases , Cartilla de ADN , Familia de Multigenes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Planta ; 232(2): 417-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20461402

RESUMEN

MicroRNAs (miRNAs) are a class of non-coding small endogenous RNAs with lengths of approximately 22 nucleotides (nt) that have been shown to regulate gene expression at the post-transcriptional levels by targeting mRNAs for degradation or by inhibiting protein translation. Although thousands of miRNAs have been identified in many species, miRNAs have not yet been identified in switchgrass (Panicum virgatum), one of the most important bioenergy crops in the United States and around the world. In this study, we identified 121 potential switchgrass miRNAs, belonging to 44 families, using a well-defined comparative genome-based computational approach. We also identified miRNA clusters and antisense miRNAs in switchgrass expressed sequences tags. These identified miRNAs potentially target 839 protein-coding genes, which can act as transcription factors, and take part in multiple biological and metabolic processes including sucrose and fat metabolism, signal transduction, stress response, and plant development. Gene ontology (GO) analysis, based on these targets, showed that 527 biological processes were involved. Twenty-five of these processes were demonstrated to participate in the metabolism of carbon, glucose, starch, fatty acid, and lignin and in xylem formation. According to pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG), 118 metabolism networks were found. These networks are involved in sucrose metabolism, fat metabolism, carbon fixation, hormone regulation, oxidative stress response, and the processing of other secondary metabolites.


Asunto(s)
MicroARNs/genética , Panicum/genética , ARN de Planta/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/química , Datos de Secuencia Molecular , ARN sin Sentido/química , ARN sin Sentido/genética , ARN de Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA