Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Oral Oncol ; 153: 106729, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663156

RESUMEN

BACKGROUND: Extranodal extension (ENE) of lymph node metastasis is one of the most reliable prognostic indicators for patients with locally advanced oral cancer. Although multiple reports have found a close relationship between immune infiltration of tumors and patient clinical outcomes, its association with ENE is unknown. METHODS: We identified 234 human papillomavirus-negative (HPV-) oral cavity squamous cell carcinoma (OSCC) patients in The Cancer Genome Atlas and investigated the immune infiltration profiles of primary tumors and their association with survival. RESULTS: Hierarchical clustering analysis clearly classified the overall immune infiltration status in OSCC into high immune or low immune groups. The combination of ENE positivity and low immune infiltration was strongly associated with poor overall survival (OS) compared to the combination of ENE positivity and high immune infiltration [hazard ratio 2.04 (95 %CI, 1.08-3.83); p = 0.024]. The immune infiltration status was not associated with OS rates in patients with ENE-negative or node negative tumors. CONCLUSION: Overall Immune infiltration at the primary site was significantly associated with clinical outcome of OSCC patients with ENE.


Asunto(s)
Metástasis Linfática , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Pronóstico , Extensión Extranodal/patología , Adulto
2.
Head Neck Pathol ; 17(4): 952-960, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995073

RESUMEN

OBJECTIVE: Oropharyngeal squamous cell carcinoma (OPSCC) recurrence is almost universally fatal. Development of effective therapeutic options requires an improved understanding of recurrent OPSCC biology. METHODS: We analyzed paired primary-recurrent OPSCC from Veterans treated at the Michael E. DeBakey Veterans Affairs Medical Center between 2000 and 2020 who received curative intent radiation-based treatment (with or without chemotherapy). Patient tumors were analyzed using standard immunohistochemistry and automated imaging of infiltrating lymphocytes and multinucleated tumor cells coupled to machine learning algorithms. RESULTS: Primary and recurrent tumors demonstrated high concordance via p16 and p53 immunohistochemistry, with comparable levels of multinucleation. In contrast, recurrent tumors demonstrated significantly higher levels of CD8+ tumor infiltrating lymphocytes (p<0.05) and higher levels of PD-L1 expression (p<0.05). CONCLUSION: Exposure to chemo-radiation and recurrence following treatment preserves critical features of intrinsic tumor biology and the tumor immune microenvironment suggesting that novel treatment regimens may be as effective in the salvage setting as in the definitive intent setting.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias Orofaríngeas/patología , Linfocitos Infiltrantes de Tumor , Pronóstico , Microambiente Tumoral
3.
Res Sq ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37674722

RESUMEN

Objective: Oropharyngeal squamous cell carcinoma (OPSCC) recurrence is almost universally fatal. Development of effective therapeutic options requires an improved understanding of recurrent OPSCC biology. Methods: We analyzed paired primary-recurrent OPSCC from Veterans treated at the Michael E. DeBakey Veterans Affairs Medical Center between 2000 and 2020 who received curative intent radiation-based treatment (with or without chemotherapy). Patient tumors were analyzed using standard immunohistochemistry and automated imaging of infiltrating lymphocytes and multinucleated tumor cells coupled to machine learning algorithms. Results: Primary and recurrent tumors demonstrated high concordance via p16 and p53 immunohistochemistry, with comparable levels of multinucleation. In contrast, recurrent tumors demonstrated significantly higher levels of CD8+ tumor infiltrating lymphocytes (p<0.05) and higher levels of PD-L1 expression (p<0.05). Conclusion: Exposure to chemo-radiation and recurrence following treatment does not appear deleterious to underlying biological characteristics and anti-tumor immunity of oropharyngeal cancer, suggesting that novel treatment regimens may be as effective in the salvage setting as in the definitive intent setting.

4.
Oral Oncol ; 143: 106459, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37307602

RESUMEN

OBJECTIVES: Matching treatment intensity to tumor biology is critical to precision oncology for head and neck squamous cell carcinoma (HNSCC) patients. We sought to identify biological features of tumor cell multinucleation, previously shown by us to correlate with survival in oropharyngeal (OP) SCC using a machine learning approach. MATERIALS AND METHODS: Hematoxylin and eosin images from an institutional OPSCC cohort formed the training set (DTr). TCGA HNSCC patients (oral cavity, oropharynx and larynx/hypopharynx) formed the validation set (DV). Deep learning models were trained in DTr to calculate a multinucleation index (MuNI) score. Gene set enrichment analysis (GSEA) was then used to explore correlations between MuNI and tumor biology. RESULTS: MuNI correlated with overall survival. A multivariable nomogram that included MuNI, age, race, sex, T/N stage, and smoking status yielded a C-index of 0.65, and MuNI was prognostic of overall survival (2.25, 1.07-4.71, 0.03), independent of the other variables. High MuNI scores correlated with depletion of effector immunocyte subsets across all HNSCC sites independent of HPV and TP53 mutational status although the correlations were strongest in wild-type TP53 tumors potentially due to aberrant mitotic events and activation of DNA-repair mechanisms. CONCLUSION: MuNI is associated with survival in HNSCC across subsites. This may be driven by an association between high levels of multinucleation and a suppressive (potentially exhausted) tumor immune microenvironment. Mechanistic studies examining the link between multinucleation and tumor immunity will be required to characterize biological drivers of multinucleation and their impact on treatment response and outcomes.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Medicina de Precisión , Pronóstico , Microambiente Tumoral
5.
Br J Cancer ; 128(11): 2013-2024, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37012319

RESUMEN

BACKGROUND: Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS: To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS: Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS: Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Cisplatino/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Glucosa , Antineoplásicos/farmacología
6.
Clin Cancer Res ; 29(7): 1344-1359, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689560

RESUMEN

PURPOSE: Cisplatin (CDDP)-based chemotherapy is a first-line treatment for patients with advanced head and neck squamous cell carcinomas (HNSCC), despite a high rate of treatment failures, acquired resistance, and subsequent aggressive behavior. The purpose of this study was to study the mechanism of CDDP resistance and metastasis in HNSCC. We investigated the role of NRF2 pathway activation as a driven event for tumor progression and metastasis of HNSCC. EXPERIMENTAL DESIGN: Human HNSCC cell lines that are highly resistant to CDDP were generated. Clonogenic survival assays and a mouse model of oral cancer were used to examine the impact of NRF2 activation in vitro and in vivo on CDDP sensitivity and development of metastasis. Western blotting, immunostaining, whole-exome sequencing, single-cell transcriptomic and epigenomic profiling platforms were performed to dissect clonal evolution and molecular mechanisms. RESULTS: Implantation of CDDP-resistant HNSCC cells into the tongues of nude mice resulted in a very high rate of distant metastases. The CDDP-resistant cells had significantly higher expression of NRF2 pathway genes in the presence of newly acquired KEAP1 mutations, or via epigenomic activation of target genes. Knockdown of NRF2 or restoration of the wild-type KEAP1 genes resensitized resistant cells to CDDP and decreased distant metastasis (DM). Finally, treatment with inhibitor of glutaminase-1, a NRF2 target gene, alleviated CDDP resistance. CONCLUSIONS: CDDP resistance and development of DM are associated with dysregulated and epigenetically reprogrammed KEAP1-NRF2 signaling pathway. A strategy targeting KEAP1/NRF2 pathway or glutamine metabolism deserves further clinical investigation in patients with CDDP-resistant head and neck tumors.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Factor 2 Relacionado con NF-E2 , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Epigenómica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Desnudos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
7.
Cancer Res ; 82(23): 4444-4456, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36169922

RESUMEN

Tumor suppressor mutations in head and neck squamous cell carcinoma (HNSCC) dominate the genomic landscape, hindering the development of effective targeted therapies. Truncating and missense mutations in NOTCH1 are frequent in HNSCC, and inhibition of PI3K can selectively target NOTCH1 mutant (NOTCH1MUT) HNSCC cells. In this study, we identify several proteins that are differentially regulated in HNSCC cells after PI3K inhibition based on NOTCH1MUT status. Expression of Aurora kinase B (Aurora B), AKT, and PDK1 following PI3K inhibition was significantly lower in NOTCH1MUT cell lines than in wild-type NOTCH1 (NOTCH1WT) cells or NOTCH1MUT cells with acquired resistance to PI3K inhibition. Combined inhibition of PI3K and Aurora B was synergistic, enhancing apoptosis in vitro and leading to durable tumor regression in vivo. Overexpression of Aurora B in NOTCH1MUT HNSCC cells led to resistance to PI3K inhibition, while Aurora B knockdown increased sensitivity of NOTCH1WT cells. In addition, overexpression of Aurora B in NOTCH1MUT HNSCC cells increased total protein levels of AKT and PDK1. AKT depletion in NOTCH1WT cells and overexpression in NOTCH1MUT cells similarly altered sensitivity to PI3K inhibition, and manipulation of AKT levels affected PDK1 but not Aurora B levels. These data define a novel pathway in which Aurora B upregulates AKT that subsequently increases PDK1 selectively in NOTCH1MUT cells to mediate HNSCC survival in response to PI3K inhibition. These findings may lead to an effective therapeutic approach for HNSCC with NOTCH1MUT while sparing normal cells. SIGNIFICANCE: Aurora B signaling facilitates resistance to PI3K inhibition in head and neck squamous cell carcinoma, suggesting that combined inhibition of PI3K and Aurora kinase is a rational therapeutic strategy to overcome resistance.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fosfatidilinositol 3-Quinasas , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Aurora Quinasa B/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Receptor Notch1/metabolismo , Proliferación Celular
8.
Oncologist ; 27(12): 1004-e926, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36124629

RESUMEN

BACKGROUND: PI3K/mTOR inhibition leads to apoptosis of NOTCH1-mutant head and neck squamous cell carcinoma (HNSCC) cells. We tested the efficacy of the PI3K/mTOR inhibitor bimiralisib in patients with NOTCH1-mutant HNSCC. METHODS: Patients with recurrent/metastatic NOTCH1-mutant HNSCC who had progressed during chemotherapy and immunotherapy received bimiralisib until unacceptable toxicity or progression. To assess whether NOTCH1 mutations can be detected in blood, we measured circulating tumor DNA (ctDNA). To assess activated NOTCH1 protein levels, we quantitated cleaved NOTCH1 (cl-NOTCH) by immunohistochemistry. RESULTS: Eight patients were treated, and 6 were evaluable for response. The objective response rate was 17%. For all 8 patients, median progression-free and overall survival was 5 and 7 months, respectively. Bimiralisib was well tolerated, with expected hyperglycemia. Pharmacokinetic values were consistent with published studies. NOTCH1 mutations were detected in 83.3% of ctDNA. Staining for tumor cl-NOTCH1 was negative. The trial closed early due to sponsor insolvency. CONCLUSION: Although the trial was small, outcomes with bimiralisib were better than the historical standard of care; Results will need to be confirmed in a larger trial. The lack of cl-NOTCH1 was consistent with loss-of-function mutations and validated our mutation function algorithm. The ability to detect NOTCH1 mutations in blood will help future studies. (ClinicalTrials.gov Identifier: NCT03740100).


Asunto(s)
Neoplasias de Cabeza y Cuello , Fosfatidilinositol 3-Quinasa , Humanos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Fosfatidilinositoles , Receptor Notch1/genética
9.
J Immunother Cancer ; 10(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36002187

RESUMEN

BACKGROUND: The existence of immunologically 'cold tumors' frequently found across a wide spectrum of tumor types represents a significant challenge for cancer immunotherapy. Cold tumors have poor baseline pan-leukocyte infiltration, including a low prevalence of cytotoxic lymphocytes, and not surprisingly respond unfavorably to immune checkpoint (IC) inhibitors. We hypothesized that cold tumors harbor a mechanism of immune escape upstream and independent of ICs that may be driven by tumor biology rather than differences in mutational neoantigen burden. METHODS: Using a bioinformatic approach to analyze TCGA (The Cancer Genome Atlas) RNA sequencing data we identified genes upregulated in cold versus hot tumors across four different smoking-related cancers, including squamous carcinomas from the oral cavity (OCSCC) and lung (LUSC), and adenocarcinomas of the bladder (BLCA) and lung (LUAD). Biological significance of the gene most robustly associated with a cold tumor phenotype across all four tumor types, glutathione peroxidase 2 (GPX2), was further evaluated using a combination of in silico analyses and functional genomic experiments performed both in vitro and in in vivo with preclinical models of oral cancer. RESULTS: Elevated RNA expression of five metabolic enzymes including GPX2, aldo-keto reductase family 1 members AKR1C1, AKR1C3, and cytochrome monoxygenases (CP4F11 and CYP4F3) co-occurred in cold tumors across all four smoking-related cancers. These genes have all been linked to negative regulation of arachidonic acid metabolism-a well-established inflammatory pathway-and are also known downstream targets of the redox sensitive Nrf2 transcription factor pathway. In OCSCC, LUSC, and LUAD, GPX2 expression was highly correlated with Nrf2 activation signatures, also elevated in cold tumors. In BLCA, however, GPX2 correlated more strongly than Nrf2 signatures with decreased infiltration of multiple leukocyte subtypes. GPX2 inversely correlated with expression of multiple pro- inflammatory cytokines/chemokines and NF-kB activation in cell lines and knockdown of GPX2 led to increased secretion of prostaglandin E2 (PGE2) and interleukin-6. Conversely, GPX2 overexpression led to reduced PGE2 production in a murine OCSCC model (MOC1). GPX2 overexpressing MOC1 tumors had a more suppressive tumor immune microenvironment and responded less favorably to anti-cytotoxic T-lymphocytes-associated protein 4 IC therapy in mice. CONCLUSION: GPX2 overexpression represents a novel potentially targetable effector of immune escape in cold tumors.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Inhibidores de Puntos de Control Inmunológico , Factor 2 Relacionado con NF-E2 , Animales , Dinoprostona , Glutatión Peroxidasa/genética , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Microambiente Tumoral
10.
Clin Cancer Res ; 28(20): 4479-4493, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35972731

RESUMEN

PURPOSE: Human papillomavirus (HPV) causes >5% of cancers, but no therapies uniquely target HPV-driven cancers. EXPERIMENTAL DESIGN: We tested the cytotoxic effect of 864 drugs in 16 HPV-positive and 17 HPV-negative human squamous cancer cell lines. We confirmed apoptosis in vitro and in vivo using patient-derived xenografts. Mitotic pathway components were manipulated with drugs, knockdown, and overexpression. RESULTS: Aurora kinase inhibitors were more effective in vitro and in vivo in HPV-positive than in HPV-negative models. We hypothesized that the mechanism of sensitivity involves retinoblastoma (Rb) expression because the viral oncoprotein E7 leads to Rb protein degradation, and basal Rb protein expression correlates with Aurora inhibition-induced apoptosis. Manipulating Rb directly, or by inducing E7 expression, altered cells' sensitivity to Aurora kinase inhibitors. Rb affects expression of the mitotic checkpoint genes MAD2L1 and BUB1B, which we found to be highly expressed in HPV-positive patient tumors. Knockdown of MAD2L1 or BUB1B reduced Aurora kinase inhibition-induced apoptosis, whereas depletion of the MAD2L1 regulator TRIP13 enhanced it. TRIP13 is a potentially druggable AAA-ATPase. Combining Aurora kinase inhibition with TRIP13 depletion led to extensive apoptosis in HPV-positive cancer cells but not in HPV-negative cancer cells. CONCLUSIONS: Our data support a model in which HPV-positive cancer cells maintain a balance of MAD2L1 and TRIP13 to allow mitotic exit and survival in the absence of Rb. Because it does not affect cells with intact Rb function, this novel combination may have a wide therapeutic window, enabling the effective treatment of Rb-deficient cancers.


Asunto(s)
Alphapapillomavirus , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/farmacología , ATPasas Asociadas con Actividades Celulares Diversas/uso terapéutico , Adenosina Trifosfatasas , Apoptosis , Aurora Quinasas/metabolismo , Aurora Quinasas/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Proteína de Retinoblastoma/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
11.
Genome Res ; 32(5): 916-929, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301263

RESUMEN

Genetic variants drive the evolution of traits and diseases. We previously modeled these variants as small displacements in fitness landscapes and estimated their functional impact by differentiating the evolutionary relationship between genotype and phenotype. Conversely, here we integrate these derivatives to identify genes steering specific traits. Over cancer cohorts, integration identified 460 likely tumor-driving genes. Many have literature and experimental support but had eluded prior genomic searches for positive selection in tumors. Beyond providing cancer insights, these results introduce a general calculus of evolution to quantify the genotype-phenotype relationship and discover genes associated with complex traits and diseases.


Asunto(s)
Cálculos , Neoplasias , Evolución Biológica , Aptitud Genética , Genotipo , Humanos , Modelos Genéticos , Neoplasias/genética , Fenotipo , Selección Genética
12.
Mod Pathol ; 35(8): 1045-1054, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35184149

RESUMEN

Oropharyngeal squamous cell carcinoma (OPSCC), largely fueled by the human papillomavirus (HPV), has a complex biological and immunologic phenotype. Although HPV/p16 status can be used to stratify OPSCC patients as a function of survival, it remains unclear what drives an improved treatment response in HPV-associated OPSCC and whether targetable biomarkers exist that can inform a precision oncology approach. We analyzed OPSCC patients treated between 2000 and 2016 and correlated locoregional control (LRC), disease-free survival (DFS) and overall survival (OS) with conventional clinical parameters, risk parameters generated using deep-learning algorithms trained to quantify tumor-infiltrating lymphocytes (TILs) (OP-TIL) and multinucleated tumor cells (MuNI) and targeted transcriptomics. P16 was a dominant determinant of LRC, DFS and OS, but tobacco exposure, OP-TIL and MuNI risk features correlated with clinical outcomes independent of p16 status and the combination of p16, OP-TIL and MuNI generated a better stratification of OPSCC risk compared to individual parameters. Differential gene expression (DEG) analysis demonstrated overlap between MuNI and OP-TIL and identified genes involved in DNA repair, oxidative stress response and tumor immunity as the most prominent correlates with survival. Alteration of inflammatory/immune pathways correlated strongly with all risk features and oncologic outcomes. This suggests that development of OPSCC consists of an intersection between multiple required and permissive oncogenic and immunologic events which may be mechanistically linked. The strong relationship between tumor immunity and oncologic outcomes in OPSCC regardless of HPV status may provide opportunities for further biomarker development and precision oncology approaches incorporating immune checkpoint inhibitors for maximal anti-tumor efficacy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Humanos , Neoplasias Orofaríngeas/patología , Papillomaviridae , Infecciones por Papillomavirus/patología , Medicina de Precisión , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
13.
Nat Commun ; 12(1): 6340, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732714

RESUMEN

Despite radiation forming the curative backbone of over 50% of malignancies, there are no genomically-driven radiosensitizers for clinical use. Herein we perform in vivo shRNA screening to identify targets generally associated with radiation response as well as those exhibiting a genomic dependency. This identifies the histone acetyltransferases CREBBP/EP300 as a target for radiosensitization in combination with radiation in cognate mutant tumors. Further in vitro and in vivo studies confirm this phenomenon to be due to repression of homologous recombination following DNA damage and reproducible using chemical inhibition of histone acetyltransferase (HAT), but not bromodomain function. Selected mutations in CREBBP lead to a hyperacetylated state that increases CBP and BRCA1 acetylation, representing a gain of function targeted by HAT inhibition. Additionally, mutations in CREBBP/EP300 are associated with recurrence following radiation in squamous cell carcinoma cohorts. These findings provide both a mechanism of resistance and the potential for genomically-driven treatment.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Mutación con Ganancia de Función , Histona Acetiltransferasas/metabolismo , Recombinación Homóloga , Acetilación , Animales , Apoptosis , Proteína BRCA1/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Masculino , Ratones Desnudos , Mutación , Neoplasias/genética , Neoplasias/terapia , Dominios Proteicos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Semin Radiat Oncol ; 31(4): 274-285, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455983

RESUMEN

In multiple anatomic sites, patients with cancers associated with the Human Papillomavirus (HPV) experience better locoregional control and overall survival after radiotherapy and/or chemoradiotherapy than patients with HPV-negative cancers. These improved outcomes suggest that relatively unique biological features in HPV-positive cancers may increase sensitivity to DNA damaging agents as well as an impaired DNA damage response. This review will address potential biological mechanisms driving this increased sensitivity of HPV-positive cancer to radiation and/or chemotherapy. This review will discuss the clinical and preclinical observations that support the intrinsic radiosensitivity and/or chemosensitivity of HPV-positive cancers. Furthermore, this review will highlight the molecular mechanisms for increased radiation sensitivity using the classical "4 Rs" of radiobiology: repair, reassortment, repopulation, and reoxygenation. First, HPV-positive cancers have increased DNA damage due to increased oxidative stress and impaired DNA damage repair due to the altered activity TP53, p16, TIP60, and other repair proteins. Second, irradiated HPV-positive cancer cells display increased G2/M arrest leading to reassortment of cancer cells in more radiosensitive phases of the cell cycle. In addition, HPV-positive cancers have less radioresistant cancer stem cell subpopulations that may limit their repopulation during radiotherapy. Finally, HPV-positive cancers may also have less hypoxic tumor microenvironments that make these cancers more sensitive to radiation than HPV-negative cells. We will also discuss extrinsic immune and microenvironmental factors enriched in HPV-positive cancers that facilities responses to radiation. Therefore, these potential biological mechanisms may underpin the improved clinical outcomes often observed in these virally induced cancers.


Asunto(s)
Alphapapillomavirus , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Papillomaviridae , Infecciones por Papillomavirus/complicaciones , Radiobiología , Microambiente Tumoral
15.
Mol Cancer Ther ; 20(7): 1257-1269, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33947685

RESUMEN

Despite advances in surgery, chemotherapy, and radiation, there are limited treatment options for advanced head and neck squamous cell carcinoma (HNSCC) and survival remains very poor. Therefore, effective therapies are desperately needed. Recently, selective exploitation of DNA damage and replication stress responses has become a novel approach for cancer treatment. Wee1 kinase and Rad51 recombinase are two proteins involved in regulating replication stress and homologous recombination repair in cancer cells. In this study, we investigated the combined effect of Rad51 inhibitor (B02) and Wee1 inhibitor (AZD1775) in vitro and in vivo in various HNSCC cell lines. Clonogenic survival assays demonstrated that B02 synergized with AZD1775 in vitro in all HNSCC cell lines tested. The synergy between these drugs was associated with forced CDK1 activation and reduced Chk1 phosphorylation leading to induction of excessive DNA damage and replication stress, culminating in aberrant mitosis and apoptosis. Our results showed that elevated Rad51 mRNA expression correlated with worse survival in HNSCC patients with HPV-positive tumors. The combination of B02 and AZD1775 significantly inhibited tumor growth in vivo in mice bearing HPV-positive HNSCC tumors as compared to HPV-negative HNSCC. This differential sensitivity appears to be linked to HPV-positive tumors having more in vivo endogenous replication stress owing to transformation by E6 and E7 oncogenes. Furthermore, addition of B02 radiosensitized the HPV-negative HNSCC tumors in vitro and in vivo In conclusion, our data implicate that a novel rational combination with Rad51 and Wee1 inhibitors holds promise as synthetic lethal therapy, particularly in high-risk HPV-positive HNSCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Biología Computacional/métodos , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Recombinación Homóloga , Humanos , Ratones , Pirazoles/farmacología , Pirimidinonas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Radiat Biol ; 97(8): 1121-1128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32073931

RESUMEN

PURPOSE: Head and neck cancers (HNSCC) are routinely treated with radiotherapy; however, normal tissue toxicity remains a concern. Therefore, it is important to validate treatment modalities combining molecularly targeted agents with radiotherapy to improve the therapeutic ratio. The aim of this study was to assess the ability of the PARP inhibitor niraparib (MK-4827) alone, or in combination with cell cycle checkpoint abrogating drugs targeting Chk1 (MK-8776) or Wee1 (MK-1775), to radiosensitize HNSCCs in the context of HPV status. MATERIALS AND METHODS: PARP1, PARP2, Chk1 or Wee1 shRNA constructs were analyzed from an in vivo shRNA screen of HNSCC xenografts comparing radiosensitization differences between HPV(+) and HPV(-) tumors. Radiosensitization by niraparib alone or in combination with MK-8776 or MK-1775 was assessed by clonogenic survival in HPV(-) and HPV(+) cells; and the role of p16 in determining response was explored. Relative expressions of DNA repair genes were compared by PCR array in HPV(+) and HPV(-) cells, and following siRNA-mediated knockdown of TRIP12 in HPV(-) cells. RESULTS: In vivo shRNA screening showed a modest preferential radiosensitization by Wee1 and PARP2 in HPV(-) and Chk1 in HPV(+) tumor models. Niraparib alone enhanced the radiosensitivity of all HNSCC cell lines tested. However, HPV(-) cells were sensitized to a greater degree, as suggested by the shRNA screen. When combined with MK-8776 or MK-1775, radiosensitization was further enhanced in an HPV dependent manner with HPV(+) cells enhanced by MK-8776 and HPV(-) cells enhanced by MK-1775. A PCR array for DNA repair genes showed PARP and HR proteins BRCA1 and RAD51 were much lower in HPV(+) cells than in HPV(-). Similarly, directly knocking down p16-dependent TRIP12 decreased expression of these same genes. Overexpressing p16 decreased TRIP12 expression and increased radiosensitivity in HPV(-) HN5. However, while PARP inhibition led to significant radiosensitization in the control, it led to no further significant radiosensitization in p16 overexpressing cells. Forced p16 expression in HPV(-) HN5 increased accumulation in G1 and subG1 and limited progression to S phase, thus reducing effectiveness of PARP inhibition. CONCLUSIONS: Niraparib effectively radiosensitizes HNSCCs with a greater benefit seen in HPV(-). HPV status also plays a role in response to MK-8776 or MK-1775 when combined with niraparib due to differences in DNA repair mechanisms. This study suggests that using cell cycle abrogators in combination with PARP inhibitors may be a beneficial treatment option in HNSCC, but also emphasizes the importance of HPV status when considering effective treatment strategies.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Humanos , Indazoles/farmacología , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Pirazoles/farmacología , Pirimidinonas/farmacología , Tolerancia a Radiación/efectos de los fármacos
17.
Cells ; 9(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322834

RESUMEN

Biomarker-driven targeted therapies are lacking for head and neck squamous cell carcinoma (HNSCC), which is common and lethal. Efforts to develop such therapies are hindered by a genomic landscape dominated by the loss of tumor suppressor function, including NOTCH1 that is frequently mutated in HNSCC. Clearer understanding of NOTCH1 signaling in HNSCCs is crucial to clinically targeting this pathway. Structural characterization of NOTCH1 mutations in HNSCC demonstrates that most are predicted to cause loss of function, in agreement with NOTCH1's role as a tumor suppressor in this cancer. Experimental manipulation of NOTCH1 signaling in HNSCC cell lines harboring either mutant or wild-type NOTCH1 further supports a tumor suppressor function. Additionally, the loss of NOTCH1 signaling can drive HNSCC tumorigenesis and clinical aggressiveness. Our recent data suggest that NOTCH1 controls genes involved in early differentiation that could have different phenotypic consequences depending on the cancer's genetic background, including acquisition of pseudo-stem cell-like properties. The presence of NOTCH1 mutations may predict response to treatment with an immune checkpoint or phosphatidylinositol 3-kinase inhibitors. The latter is being tested in a clinical trial, and if validated, it may lead to the development of the first biomarker-driven targeted therapy for HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Mutación/genética , Receptor Notch1/química , Receptor Notch1/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
18.
Clin Cancer Res ; 25(11): 3329-3340, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770351

RESUMEN

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is driven largely by the loss of tumor suppressor genes, including NOTCH1, but lacks a biomarker-driven targeted therapy. Although the PI3K/mTOR pathway is frequently altered in HNSCC, the disease has modest clinical response rates to PI3K/mTOR inhibitors and lacks validated biomarkers of response. We tested the hypothesis that an unbiased pharmacogenomics approach to PI3K/mTOR pathway inhibitors would identify novel, clinically relevant molecular vulnerabilities in HNSCC with loss of tumor suppressor function.Experimental Design: We assessed the degree to which responses to PI3K/mTOR inhibitors are associated with gene mutations in 59 HNSCC cell lines. Apoptosis in drug-sensitive cell lines was confirmed in vitro and in vivo. NOTCH1 pathway components and PDK1 were manipulated with drugs, gene editing, knockdown, and overexpression. RESULTS: PI3K/mTOR inhibition caused apoptosis and decreased colony numbers in HNSCC cell lines harboring NOTCH1 loss-of-function mutations (NOTCH1 MUT) and reduced tumor size in subcutaneous and orthotopic xenograft models. In all cell lines, NOTCH1 MUT was strongly associated with sensitivity to six PI3K/mTOR inhibitors. NOTCH1 inhibition or knockout increased NOTCH1 WT HNSCC sensitivity to PI3K/mTOR inhibition. PDK1 levels dropped following PI3K/mTOR inhibition in NOTCH1 MUT but not NOTCH1 WT HNSCC, and PDK1 overexpression rescued apoptosis in NOTCH1 MUT cells. PDK1 and AKT inhibitors together caused apoptosis in NOTCH1 WT HNSCC but had little effect as single agents. CONCLUSIONS: Our findings suggest that NOTCH1 MUT predicts response to PI3K/mTOR inhibitors, which may lead to the first biomarker-driven targeted therapy for HNSCC, and that targeting PDK1 sensitizes NOTCH1 WT HNSCC to PI3K/mTOR pathway inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Receptor Notch1/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edición Génica , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mutación con Pérdida de Función , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
19.
JCI Insight ; 4(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30626753

RESUMEN

Incidence of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) has been increasing dramatically. Although long-term survival rates for these patients are high, they often suffer from permanent radiotherapy-related morbidity. This has prompted the development of de-escalation clinical protocols to reduce morbidity. However, a subset of patients do not respond even to standard therapy and have poor outcomes. It is unclear how to properly identify and treat the high- and low-risk HPV+ OPSCC patients. Since HPV positivity drives radiotherapy sensitivity, we hypothesized that variations in HPV biology may cause differences in treatment response and outcome. By analyzing gene expression data, we identified variations in HPV-related molecules among HPV+ OPSCC. A subset of tumors presented a molecular profile distinct from that of typical HPV+ tumors and exhibited poor treatment response, indicating molecular and clinical similarities with HPV- tumors. These molecular changes were also observed in vitro and correlated with radiation sensitivity. Finally, we developed a prognostic biomarker signature for identification of this subgroup of HPV+ OPSCC and validated it in independent cohorts of oropharyngeal and cervical carcinomas. These findings could translate to improved patient stratification for treatment deintensification and new therapeutic approaches for treatment-resistant HPV-related cancer.

20.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625050

RESUMEN

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/patología , Transducción de Señal/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA