Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
ACS Nano ; 18(39): 26514-26521, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39304184

RESUMEN

Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials are inclined to exhibit spin delocalization, form extended collective states, and respond to the flexibility of the molecular backbones. However, they are also highly reactive, requiring structural strategies to protect the radical states from reacting with the environment. Here, we demonstrate that the open-shell ground state of the diradical 2-OS survives on a Au(111) substrate as a global singlet formed by two unpaired electrons with antiparallel spins coupled through a conformational-dependent interaction. The 2-OS molecule is a "protected" derivative of the Chichibabin's diradical, featuring a nonplanar geometry that destabilizes the closed-shell quinoidal structure. Using scanning tunneling microscopy (STM), we localized the two interacting spins at the molecular edges, and detected an excited triplet state a few millielectronvolts above the singlet ground state. Mean-field Hubbard simulations reveal that the exchange coupling between the two spins strongly depends on the torsional angles between the different molecular moieties, suggesting the possibility of influencing the molecule's magnetic state through structural changes. This was demonstrated here using the STM tip to manipulate the molecular conformation, while simultaneously detecting changes in the spin excitation spectrum. Our work suggests the potential of these PAHs as all-carbon spin-crossover materials.

2.
Nano Lett ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748446

RESUMEN

Vibrational quanta of melamine and its tautomer are analyzed at the single-molecule level on Cu(100) with inelastic electron tunneling spectroscopy. The on-surface tautomerization gives rise to markedly different low-energy vibrational spectra of the isomers, as evidenced by a shift in mode energies and a variation in inelastic cross sections. Spatially resolved spectroscopy reveals the maximum signal strength on an orbital nodal plane, excluding resonant inelastic tunneling as the mechanism underlying the quantum excitations. Decreasing the probe-molecule separation down to the formation of a chemical bond between the melamine amino group and the Cu apex atom of the tip leads to a quenched vibrational spectrum with different excitation energies. Density functional and electron transport calculations reproduce the experimental findings and show that the shift in the quantum energies applies to internal molecular bending modes. The simulations moreover suggest that the bond formation represents an efficient manner of tautomerizing the molecule.

3.
Nat Chem ; 16(5): 755-761, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332330

RESUMEN

Indenofluorenes are non-benzenoid conjugated hydrocarbons that have received great interest owing to their unusual electronic structure and potential applications in nonlinear optics and photovoltaics. Here we report the generation of unsubstituted indeno[1,2-a]fluorene on various surfaces by the cleavage of two C-H bonds in 7,12-dihydroindeno[1,2-a]fluorene through voltage pulses applied by the tip of a combined scanning tunnelling microscope and atomic force microscope. On bilayer NaCl on Au(111), indeno[1,2-a]fluorene is in the neutral charge state, but it exhibits charge bistability between neutral and anionic states on the lower-workfunction surfaces of bilayer NaCl on Ag(111) and Cu(111). In the neutral state, indeno[1,2-a]fluorene exhibits one of two ground states: an open-shell π-diradical state, predicted to be a triplet by density functional and multireference many-body perturbation theory calculations, or a closed-shell state with a para-quinodimethane moiety in the as-indacene core. We observe switching between open- and closed-shell states of a single molecule by changing its adsorption site on NaCl.

4.
J Phys Chem Lett ; 14(50): 11506-11512, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38088859

RESUMEN

Organic diradicals are envisioned as elementary building blocks for designing a new generation of spintronic devices and have been used in constructing prototypical field effect transistors and nonlinear optical devices. Open-shell systems, however, are also reactive, thus requiring design strategies to "protect" their radical character from the environment, especially when they are embedded in solid-state devices. Here, we report the persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene (DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy measurements on single-molecules detected singlet-triplet excitations that were absent for DIAn species packed in assembled structures. Density functional theory simulations unravel that the molecular geometry on the metal substrate can crucially modify the value of the singlet-triplet gap via the delocalization of the radical sites. The persistence of the diradical character over metallic substrates is a promising finding for integrating radical-based materials into functional devices.

5.
Phys Rev Lett ; 131(14): 148001, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862665

RESUMEN

The pervasive phenomenon of friction has been studied at the nanoscale via a controlled manipulation of single atoms and molecules with a metallic tip, which enabled a precise determination of the static friction force necessary to initiate motion. However, little is known about the atomic dynamics during manipulation. Here, we reveal the complete manipulation process of a CO molecule on a Cu(110) surface at low temperatures using a combination of noncontact atomic force microscopy and density functional theory simulations. We found that an intermediate state, inaccessible for the far-tip position, is enabled in the reaction pathway for the close-tip position, which is crucial to understanding the manipulation process, including dynamic friction. Our results show how friction forces can be controlled and optimized, facilitating new fundamental insights for tribology.

6.
Nat Commun ; 14(1): 6677, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865684

RESUMEN

Low dimensional carbon-based materials can show intrinsic magnetism associated to p-electrons in open-shell π-conjugated systems. Chemical design provides atomically precise control of the π-electron cloud, which makes them promising for nanoscale magnetic devices. However, direct verification of their spatially resolved spin-moment remains elusive. Here, we report the spin-polarization of chiral graphene nanoribbons (one-dimensional strips of graphene with alternating zig-zag and arm-chair boundaries), obtained by means of spin-polarized scanning tunnelling microscopy. We extract the energy-dependent spin-moment distribution of spatially extended edge states with π-orbital character, thus beyond localized magnetic moments at radical or defective carbon sites. Guided by mean-field Hubbard calculations, we demonstrate that electron correlations are responsible for the spin-splitting of the electronic structure. Our versatile platform utilizes a ferromagnetic substrate that stabilizes the organic magnetic moments against thermal and quantum fluctuations, while being fully compatible with on-surface synthesis of the rapidly growing class of nanographenes.

7.
Nat Commun ; 14(1): 4802, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558678

RESUMEN

Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.

8.
Otol Neurotol ; 44(7): e497-e503, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442608

RESUMEN

OBJECTIVE: 3-D printing offers convenient and low-cost mastoidectomy training; nonetheless, training benefits using 3-D-printed temporal bones remain largely unexplored. In this study, we have collected validity evidence for a low-cost, 3-D-printed temporal bone for mastoidectomy training and established a credible pass/fail score for performance on the model. STUDY DESIGN: A prospective educational study gathering validity evidence using Messick's validity framework. SETTING: Seven Danish otorhinolaryngology training institutions. PARTICIPANTS: Eighteen otorhinolaryngology residents (novices) and 11 experienced otosurgeons (experts). INTERVENTION: Residents and experienced otosurgeons each performed two to three anatomical mastoidectomies on a low-cost, 3-D-printed temporal bone model produced in-house. After drilling, mastoidectomy performances were rated by three blinded experts using a 25-item modified Welling scale (WS). MAIN OUTCOME MEASURE: Validity evidence using Messick's framework including reliability assessment applying both classical test theory and Generalizability theory. RESULTS: Novices achieved a mean score of 13.9 points; experienced otosurgeons achieved 23.2 points. Using the contrasting groups method, we established a 21/25-point pass/fail level. The Generalizability coefficient was 0.91, and 75% of the score variance was attributable to participant performance, indicating a high level of assessment reliability. Subsequent D studies revealed that two raters rating one performance or one rater rating two performances were sufficiently reliable for high-stakes assessment. CONCLUSION: Validity evidence supports using a low-cost, 3-D-printed model for mastoidectomy training. The model can be printed in-house using consumer-grade 3-D printers and serves as an additional training tool in the temporal bone curriculum. For competency-based training, we established a cut-off score of 21 of 25 WS points using the contrasting groups method.


Asunto(s)
Otolaringología , Entrenamiento Simulado , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Hueso Temporal/cirugía , Mastoidectomía/métodos , Otolaringología/educación , Entrenamiento Simulado/métodos , Competencia Clínica
9.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37220757

RESUMEN

We study theoretically electron interference in a Mach-Zehnder-like geometry formed by four zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they form intersection angles of 60∘. Depending on the interribbon separation, each intersection can be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with interfering pathways. Based on the mean-field Hubbard model and Green's function techniques, we evaluate the electron transport properties of such eight-terminal devices and identify pairs of terminals that are subject to self-interference. We further show that the scattering matrix formalism in the approximation of independent scattering at the four individual junctions provides accurate results as compared with the Green's function description, allowing for a simple interpretation of the interference process between two dominant pathways. This enables us to characterize the device sensitivity to phase shifts from an external magnetic flux according to the Aharonov-Bohm effect as well as from small geometric variations in the two path lengths. The proposed devices could find applications as magnetic field sensors and as detectors of phase shifts induced by local scatterers on the different segments, such as adsorbates, impurities or defects. The setup could also be used to create and study quantum entanglement.

11.
J Phys Condens Matter ; 34(44)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35977474

RESUMEN

Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.

12.
Phys Rev Lett ; 129(3): 037701, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905343

RESUMEN

Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying different ribbons and intersection angles we provide evidence that this is a general feature with edge-polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series. Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies with applications for interferometry and entanglement.

13.
Nano Lett ; 22(1): 164-171, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34936370

RESUMEN

Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.

14.
Angew Chem Int Ed Engl ; 60(48): 25224-25229, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34647398

RESUMEN

Triangulene nanographenes are open-shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long-sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl-anthracene cyclic hexamer and the on-surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π-electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.

15.
Nat Commun ; 12(1): 5538, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545075

RESUMEN

Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional π-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergo a topological phase transition. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunneling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. Our findings represent a new platform for producing topologically protected spin states and demonstrate the potential of connecting chiral edge and defect structure with band engineering.

16.
Nat Mater ; 20(5): 577-578, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33510448
17.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064521

RESUMEN

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

18.
Phys Rev Lett ; 124(17): 177201, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412280

RESUMEN

Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.

19.
ACS Nano ; 14(4): 3907-3916, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32073820

RESUMEN

Molecular rotors have attracted considerable interest for their prospects in nanotechnology. However, their adsorption on supporting substrates, where they may be addressed individually, usually modifies their properties. Here, we investigate the switching of two closely related three-state rotors mounted on platforms on Au(111) using low-temperature scanning tunneling microscopy and density functional theory calculations. Being physisorbed, the platforms retain important gas-phase properties of the rotor. This simplifies a detailed analysis and permits, for instance, the identification of the vibrational modes involved in the rotation process. The symmetry provided by the platform enables active control of the rotation direction through electrostatic interactions with the tip and charged neighboring adsorbates. The present investigation of two model systems may turn out useful for designing platforms that provide directional rotation and for transferring more sophisticated molecular machines from the gas phase to surfaces.

20.
Nat Commun ; 10(1): 1573, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952953

RESUMEN

Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA