Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hum Mol Genet ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676626

RESUMEN

MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.

2.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38517332

RESUMEN

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Neuronas Motoras/patología , Mutación , Enfermedades Neuroinflamatorias , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
EClinicalMedicine ; 69: 102495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38384337

RESUMEN

Background: In April 2023, the antisense oligonucleotide tofersen was approved by the U.S. Food and Drug Administration (FDA) for treatment of SOD1-amyotrophic lateral sclerosis (ALS), after a decrease of neurofilament light chain (NfL) levels had been demonstrated. Methods: Between 03/2022 and 04/2023, 24 patients with SOD1-ALS from ten German ALS reference centers were followed-up until the cut-off date for ALS functional rating scale revised (ALSFRS-R), progression rate (loss of ALSFRS-R/month), NfL, phosphorylated neurofilament heavy chain (pNfH) in cerebrospinal fluid (CSF), and adverse events. Findings: During the observation period, median ALSFRS-R decreased from 38.0 (IQR 32.0-42.0) to 35.0 (IQR 29.0-42.0), corresponding to a median progression rate of 0.11 (IQR -0.09 to 0.32) points of ALSFRS-R lost per month. Median serum NfL declined from 78.0 pg/ml (IQR 37.0-147.0 pg/ml; n = 23) to 36.0 pg/ml (IQR 22.0-65.0 pg/ml; n = 23; p = 0.02), median pNfH in CSF from 2226 pg/ml (IQR 1061-6138 pg/ml; n = 18) to 1151 pg/ml (IQR 521-2360 pg/ml; n = 18; p = 0.02). In the CSF, we detected a pleocytosis in 73% of patients (11 of 15) and an intrathecal immunoglobulin synthesis (IgG, IgM, or IgA) in 9 out of 10 patients. Two drug-related serious adverse events were reported. Interpretation: Consistent with the VALOR study and its Open Label Extension (OLE), our results confirm a reduction of NfL serum levels, and moreover show a reduction of pNfH in CSF. The therapy was safe, as no persistent symptoms were observed. Pleocytosis and Ig synthesis in CSF with clinical symptoms related to myeloradiculitis in two patients, indicate the potential of an autoimmune reaction. Funding: No funding was received towards this study.

7.
Brain Commun ; 5(3): fcad152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223130

RESUMEN

Therapy of motoneuron diseases entered a new phase with the use of intrathecal antisense oligonucleotide therapies treating patients with specific gene mutations predominantly in the context of familial amyotrophic lateral sclerosis. With the majority of cases being sporadic, we conducted a cohort study to describe the mutational landscape of sporadic amyotrophic lateral sclerosis. We analysed genetic variants in amyotrophic lateral sclerosis-associated genes to assess and potentially increase the number of patients eligible for gene-specific therapies. We screened 2340 sporadic amyotrophic lateral sclerosis patients from the German Network for motor neuron diseases for variants in 36 amyotrophic lateral sclerosis-associated genes using targeted next-generation sequencing and for the C9orf72 hexanucleotide repeat expansion. The genetic analysis could be completed on 2267 patients. Clinical data included age at onset, disease progression rate and survival. In this study, we found 79 likely pathogenic Class 4 variants and 10 pathogenic Class 5 variants (without the C9orf72 hexanucleotide repeat expansion) according to the American College of Medical Genetics and Genomics guidelines, of which 31 variants are novel. Thus, including C9orf72 hexanucleotide repeat expansion, Class 4, and Class 5 variants, 296 patients, corresponding to ∼13% of our cohort, could be genetically resolved. We detected 437 variants of unknown significance of which 103 are novel. Corroborating the theory of oligogenic causation in amyotrophic lateral sclerosis, we found a co-occurrence of pathogenic variants in 10 patients (0.4%) with 7 being C9orf72 hexanucleotide repeat expansion carriers. In a gene-wise survival analysis, we found a higher hazard ratio of 1.47 (95% confidence interval 1.02-2.1) for death from any cause for patients with the C9orf72 hexanucleotide repeat expansion and a lower hazard ratio of 0.33 (95% confidence interval 0.12-0.9) for patients with pathogenic SOD1 variants than for patients without a causal gene mutation. In summary, the high yield of 296 patients (∼13%) harbouring a pathogenic variant and oncoming gene-specific therapies for SOD1/FUS/C9orf72, which would apply to 227 patients (∼10%) in this cohort, corroborates that genetic testing should be made available to all sporadic amyotrophic lateral sclerosis patients after respective counselling.

8.
Brain Commun ; 5(2): fcad087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006326

RESUMEN

An expansion of the GGGGCC hexanucleotide in the non-coding region of C9orf72 represents the most common cause of familial amyotrophic lateral sclerosis. The objective was to describe and analyse the clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations in a large population. Between November 2011 and December 2020, clinical and genetic characteristics of n = 248 patients with amyotrophic lateral sclerosis carrying C9orf72 mutations were collected from the clinical and scientific network of German motoneuron disease centres. Clinical parameters included age of onset, diagnostic delay, family history, neuropsychological examination, progression rate, phosphorylated neurofilament heavy chain levels in CSF and survival. The number of repeats was correlated with the clinical phenotype. The clinical phenotype was compared to n = 84 patients with SOD1 mutations and n = 2178 sporadic patients without any known disease-related mutations. Patients with C9orf72 featured an almost balanced sex ratio with 48.4% (n = 120) women and 51.6% (n = 128) men. The rate of 33.9% patients (n = 63) with bulbar onset was significantly higher compared to sporadic (23.4%, P = 0.002) and SOD1 patients (3.1%, P < 0.001). Of note, 56.3% (n = 138) of C9orf72, but only 16.1% of SOD1 patients reported a negative family history (P < 0.001). The GGGGCC hexanucleotide repeat length did not influence the clinical phenotypes. Age of onset (58.0, interquartile range 52.0-63.8) was later compared to SOD1 (50.0, interquartile range 41.0-58.0; P < 0.001), but earlier compared to sporadic patients (61.0, interquartile range 52.0-69.0; P = 0.01). Median survival was shorter (38.0 months) compared to SOD1 (198.0 months, hazard ratio 1.97, 95% confidence interval 1.34-2.88; P < 0.001) and sporadic patients (76.0 months, hazard ratio 2.34, 95% confidence interval 1.64-3.34; P < 0.001). Phosphorylated neurofilament heavy chain levels in CSF (2880, interquartile range 1632-4638 pg/ml) were higher compared to sporadic patients (1382, interquartile range 458-2839 pg/ml; P < 0.001). In neuropsychological screening, C9orf72 patients displayed abnormal results in memory, verbal fluency and executive functions, showing generally worse performances compared to SOD1 and sporadic patients and a higher share with suspected frontotemporal dementia. In summary, clinical features of patients with C9orf72 mutations differ significantly from SOD1 and sporadic patients. Specifically, they feature a more frequent bulbar onset, a higher share of female patients and shorter survival. Interestingly, we found a high proportion of patients with negative family history and no evidence of a relationship between repeat lengths and disease severity.

9.
Mol Neurobiol ; 60(7): 3898-3910, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36991279

RESUMEN

The fragile X protein (FXP) family comprises the multifunctional RNA-binding proteins FMR1, FXR1, and FXR2 that play an important role in RNA metabolism and regulation of translation, but also in DNA damage and cellular stress responses, mitochondrial organization, and more. FMR1 is well known for its implication in neurodevelopmental diseases. Recent evidence suggests substantial contribution of this protein family to amyotrophic lateral sclerosis (ALS) pathogenesis. ALS is a highly heterogeneous neurodegenerative disease with multiple genetic and unclear environmental causes and very limited treatment options. The loss of motoneurons in ALS is still poorly understood, especially because pathogenic mechanisms are often restricted to patients with mutations in specific causative genes. Identification of converging disease mechanisms evident in most patients and suitable for therapeutic intervention is therefore of high importance. Recently, deregulation of the FXPs has been linked to pathogenic processes in different types of ALS. Strikingly, in many cases, available data points towards loss of expression and/or function of the FXPs early in the disease, or even at the presymptomatic state. In this review, we briefly introduce the FXPs and summarize available data about these proteins in ALS. This includes their relation to TDP-43, FUS, and ALS-related miRNAs, as well as their possible contribution to pathogenic protein aggregation and defective RNA editing. Furthermore, open questions that need to be addressed before definitively judging suitability of these proteins as novel therapeutic targets are discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/genética , Proteínas de Unión al ARN/genética , Neuronas Motoras/metabolismo , Daño del ADN , Proteína FUS de Unión a ARN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
10.
Nat Commun ; 14(1): 342, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670122

RESUMEN

Amyotrophic lateral sclerosis (ALS) has substantial heritability, in part shared with fronto-temporal dementia (FTD). We show that ALS heritability is enriched in splicing variants and in binding sites of 6 RNA-binding proteins including TDP-43 and FUS. A transcriptome wide association study (TWAS) identified 6 loci associated with ALS, including in NUP50 encoding for the nucleopore basket protein NUP50. Independently, rare variants in NUP50 were associated with ALS risk (P = 3.71.10-03; odds ratio = 3.29; 95%CI, 1.37 to 7.87) in a cohort of 9,390 ALS/FTD patients and 4,594 controls. Cells from one patient carrying a NUP50 frameshift mutation displayed a decreased level of NUP50. Loss of NUP50 leads to death of cultured neurons, and motor defects in Drosophila and zebrafish. Thus, our study identifies alterations in splicing in neurons as critical in ALS and provides genetic evidence linking nuclear pore defects to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Pez Cebra/metabolismo , Neuronas/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Mutación
11.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077049

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN/genética , Células Madre Pluripotentes Inducidas , Mutación , Enfermedades Neurodegenerativas , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo , ARN/metabolismo
12.
Curr Opin Neurol ; 35(5): 672-677, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35942673

RESUMEN

PURPOSE OF REVIEW: ALS genetics are highly dynamic and of great interest for the ALS research community. Each year, by using ever-growing datasets and cutting-edge methodology, an array of novel ALS-associated genes and downstream pathomechanisms are discovered. The increasing plenty and complexity of insights warrants regular summary by-reviews. RECENT FINDINGS: Most recent disease gene discoveries constitute the candidate and risk genes SPTLC1 , KANK1 , CAV1 , HTT , and WDR7 , as well as seven novel risk loci. Cell type and functional enrichment analyses enlighten the genetic basis of selective motor neuron vulnerability in ALS demonstrating high expression of ALS-associated genes in cortical motor neurons and highlight the pathogenic significance of cell-autonomous processes. Major pathomechanistic insights have been gained regarding known ALS genes/proteins, specifically C9orf72 , TDP43, ANXA11 , and KIF5A . The first ASO-based gene-specific therapy trials in familial forms of ALS have yielded equivocal results stressing the re-evaluation of pathomechanisms linked to SOD1 and C9orf72 mutations. SUMMARY: The genetic and molecular basis of ALS is increasingly examined on single-cell resolution. In the past 2 years, the understanding of the downstream mechanisms of several ALS genes and TDP-43 proteinopathy has been considerably extended. These insights will result in novel gene specific therapy approaches for sporadic ALS and genetic subtypes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Proteína C9orf72/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Cinesinas , Neuronas Motoras/patología , Mutación/genética
13.
Neurobiol Aging ; 116: 16-24, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35537341

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with a monogenic cause in approximately 10% of cases. However, familial clustering of disease without inheritance in a Mendelian manner and the broad range of phenotypes suggest the presence of epigenetic mechanisms. Hence, we performed an epigenome-wide association study on sporadic, symptomatic and presymptomatic familial ALS cases with mutations in C9ORF72 and FUS and healthy controls studying DNA methylation in blood cells. We found differentially methylated DNA positions (DMPs) and regions embedding DMPs associated with either disease status, C9ORF72 or FUS mutation status. One DMP reached methylome-wide significance and is attributed to a region encoding a long non-coding RNA (LOC389247). Furthermore, we could demonstrate co-localization of DMPs with an ALS-associated GWAS region near the SCN7A/SCN9A and XIRP2 genes. Finally, a classifier model that predicts disease status (ALS, healthy) classified all but one presymptomatic mutation carrier as healthy, suggesting that the presence of ALS symptoms rather than the presence of ALS-associated genetic mutations is associated with blood cell DNA methylation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Células Sanguíneas , Proteína C9orf72/genética , Epigenoma , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Proteína FUS de Unión a ARN/genética
14.
J Neurol Neurosurg Psychiatry ; 93(2): 201-206, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34518333

RESUMEN

OBJECTIVE: The only identified cause of amyotrophic lateral sclerosis (ALS) are mutations in a number of genes found in familial cases but also in sporadic cases. De novo mutations occurring in a parental gonadal cell, in the zygote or postzygotic during embryonal development can result in an apparently sporadic/isolated case of ALS later in life. We searched for de novo mutations in SOD1 as a cause of ALS. METHODS: We analysed peripheral-blood exome, genome and Sanger sequencing to identify deleterious mutations in SOD1 in 4000 ALS patients from Germany, South Korea and Sweden. Parental kinship was confirmed using highly polymorphic microsatellite markers across the genome. Medical genealogical and clinical data were reviewed and compared with the literature. RESULTS: We identified four sporadic ALS cases with de novo mutations in SOD1. They aggregate in hot-spot codons earlier found mutated in familial cases. Their phenotypes match closely what has earlier been reported in familial cases with pathogenic mutations in SOD1. We also encountered familial cases where de novo mutational events in recent generations may have been involved. CONCLUSIONS: De novo mutations are a cause of sporadic ALS and may also be underpinning smaller families with few affected ALS cases. It was not possible to ascertain if the origin of the de novo mutations was parental germline, zygotic or postzygotic during embryonal development. All ALS patients should be offered genetic counselling and genetic screening, the challenges of variant interpretation do not outweigh the potential benefits including earlier confirmed diagnosis and possible bespoken therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1/genética , Adulto , Esclerosis Amiotrófica Lateral/etiología , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Alemania , Humanos , Estudios Longitudinales , Masculino , Mutación , Fenotipo , Proteína FUS de Unión a ARN/genética , República de Corea , Suecia , Adulto Joven
15.
Neurogenetics ; 23(1): 59-65, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518945

RESUMEN

Mutations in FUS and TBK1 often cause aggressive early-onset amyotrophic lateral sclerosis (ALS) or a late-onset ALS and/or frontotemporal dementia (FTD) phenotype, respectively. Co-occurrence of mutations in two or more Mendelian ALS/FTD genes has been repeatedly reported. However, little is known how two pathogenic ALS/FTD mutations in the same patient interact to shape the final phenotype. We screened 28 ALS patients with a known FUS mutation by whole-exome sequencing and targeted evaluation for mutations in other known ALS genes followed by genotype-phenotype correlation analysis of FUS/TBK1 double-mutant patients. We report on new and summarize previously published FUS and TBK1 double-mutant ALS/FTD patients and their families. We found that, within a family, mutations in FUS cause ALS while TBK1 single mutations are observed in FTD patients. FUS/TBK1 double mutations manifested as ALS and without a manifest difference regarding age at onset and disease duration when compared to FUS single-mutant individuals. In conclusion, TBK1 and FUS variants do not seem to interact in a simple additive way. Rather, the phenotype of FUS/TBK1 double-mutant patients appears to be dominated by the FUS mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Humanos , Mutación , Linaje , Proteínas Serina-Treonina Quinasas/genética , Proteína FUS de Unión a ARN/genética
17.
Cells ; 10(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918274

RESUMEN

Accumulating evidence suggests that microRNAs (miRNAs) are a contributing factor to neurodegenerative diseases. Although altered miRNA profiles in serum or plasma have been reported for several neurodegenerative diseases, little is known about the interaction between dysregulated miRNAs and their protein binding partners. We found significant alterations of the miRNA abundance pattern in serum and in isolated serum-derived extracellular vesicles of Parkinson's disease (PD) patients. The differential expression of miRNA in PD patients was more robust in serum than in isolated extracellular vesicles and could separate PD patients from healthy controls in an unsupervised approach to a high degree. We identified a novel protein interaction partner for the strongly dysregulated hsa-mir-4745-5p. Our study provides further evidence for the involvement of miRNAs and HNF4a in PD. The demonstration that miRNA-protein binding might mediate the pathologic effects of HNF4a both by direct binding to it and by binding to proteins regulated by it suggests a complex role for miRNAs in pathology beyond the dysregulation of transcription.


Asunto(s)
MicroARNs/sangre , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/genética , Proteínas/metabolismo , Anciano , Estudios de Casos y Controles , Exosomas/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Análisis de Componente Principal , Unión Proteica
18.
Brain ; 144(4): 1214-1229, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871026

RESUMEN

Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/sangre , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Humanos , Proteína FUS de Unión a ARN/genética
19.
Exp Neurol ; 335: 113496, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038415

RESUMEN

Mutations in the genes TARDBP (encoding the TDP-43 protein) and TBK1 can cause familial ALS. Neuronal cytoplasmatic accumulations of the misfolded, hyperphosphorylated RNA-binding protein TDP-43 are the pathological hallmark of most ALS cases and have been suggested to be a key aspect of ALS pathogenesis. Pharmacological induction of autophagy has been shown to reduce mutant TDP-43 aggregates and alleviate motor deficits in mice. TBK1 is exemplary for several other ALS genes that regulate autophagy. Consequently, we employed double mutant mice with both a heterozygous Tbk1 deletion and transgenic expression of human TDP-43G298S to test the hypothesis that impaired autophagy reduces intracellular clearance of an aggregation-prone protein and enhances toxicity of mutant TDP-43. The heterozygous deletion of Tbk1 did not change expression or cellular distribution of TDP-43 protein, motor neuron loss or reactive gliosis in the spinal cord of double-mutant mice at the age of 19 months. However, it aggravated muscle denervation and, albeit to a small and variable degree, motor dysfunction in TDP-43G298S transgenic mice, as similarly observed in the SOD1G93A transgenic mouse model for ALS before. Conclusively, our findings suggest that TBK1 mutations can affect the neuromuscular synapse.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Unión Neuromuscular/patología , Proteínas Serina-Treonina Quinasas/genética , Animales , Eliminación de Gen , Gliosis/genética , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Desnervación Muscular , Mutación , Médula Espinal/patología
20.
Brain Commun ; 2(2): fcaa133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005894

RESUMEN

Loss-of-function mutations in TANK-binding kinase 1 cause genetic amyotrophic lateral sclerosis and frontotemporal dementia. Consistent with incomplete penetrance in humans, haploinsufficiency of TANK-binding kinase 1 did not cause motor symptoms in mice up to 7 months of age in a previous study. Ageing is the strongest risk factor for neurodegenerative diseases. Hypothesizing that age-dependent processes together with haploinsufficiency of TANK-binding kinase 1 could create a double hit situation that may trigger neurodegeneration, we examined mice with hemizygous deletion of Tbk1 (Tbk1 +/- mice) and wild-type siblings up to 22 months. Compared to 4-month old mice, aged, 22-month old mice showed glial activation, deposition of motoneuronal p62 aggregates, muscular denervation and profound transcriptomic alterations in a set of 800 immune-related genes upon ageing. However, we did not observe differences regarding these measures between aged Tbk1 +/- and wild-type siblings. High age did also not precipitate TAR DNA-binding protein 43 aggregation, neurodegeneration or a neurological phenotype in Tbk1+/ - mice. In young Tbk1+/ - mice, however, we found the CNS immune gene expression pattern shifted towards the age-dependent immune system dysregulation observed in old mice. Conclusively, ageing is not sufficient to precipitate an amyotrophic lateral sclerosis or frontotemporal dementia phenotype or spinal or cortical neurodegeneration in a model of Tbk1 haploinsufficiency. We hypothesize that the consequences of Tbk1 haploinsufficiency may be highly context-dependent and require a specific synergistic stress stimulus to be uncovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA