Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Drug Resist Updat ; 74: 101081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521003

RESUMEN

Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.


Asunto(s)
Quinasa de Linfoma Anaplásico , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Compuestos Organofosforados , Inhibidores de Proteínas Quinasas , Proteoma , Familia-src Quinasas , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Ratones , Proteoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Pirimidinas/farmacología , Proteómica/métodos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Cyst Fibros ; 23(2): 226-233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199892

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is characterized by highly viscous mucus obstructing the lower and upper airways, chronic neutrophil inflammation and infection resulting not only in lung destruction but also in paranasal sinus involvement. The pathogenesis of CF-associated chronic rhinosinusitis (CRS) is still not well understood, and it remains unclear how the microbiome in the upper airways (UAW) influences paranasal sinus inflammation. METHODS: In a cross-sectional study in pediatric patients with CF under stable disease conditions, we examined the microbiome in relation to inflammation by comparing nasal swabs (NS) and nasal lavage (NL) as two UAW sampling methods. The microbiota structure of both NS and NL was determined by 16S rRNA gene amplicon sequencing. In addition, pro-inflammatory cytokines (IL-1ß, IL-6, IL-8, TNF-α) and proteases (SLPI, TIMP-1, NE/A1-AT complex) as well as neutrophil elastase activity were measured in NL. RESULTS: Simultaneous NS and NL samples were collected from 36 patients with CF (age range: 7 - 19 years). The microbiome of NS samples was shown to be significantly lower in α-diversity and evenness compared to NL samples. NS samples were particularly found to be colonized with Staphylococcus species. NL microbiome was shown to correlate much better with the sinonasal inflammation status than NS microbiome. Especially the detection of Moraxella in NL was associated with increased inflammatory response. CONCLUSION: Our results show that the NL microbiome reflects sinonasal inflammation better than NS and support NL as a promising tool for simultaneous assessment of the UAW microbiome and inflammation in children with CF.


Asunto(s)
Fibrosis Quística , Microbiota , Rinitis , Sinusitis , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Femenino , Niño , Masculino , Sinusitis/microbiología , Sinusitis/diagnóstico , Estudios Transversales , Adolescente , Rinitis/microbiología , Rinitis/diagnóstico , Líquido del Lavado Nasal/microbiología , Lavado Nasal (Proceso)/métodos , Adulto Joven , Inflamación/microbiología , Inflamación/etiología , ARN Ribosómico 16S/análisis , Citocinas/metabolismo , Citocinas/análisis
3.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35732550

RESUMEN

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Asunto(s)
Fibrosis Quística , Niño , Humanos , Receptor de Muerte Celular Programada 1 , Pulmón , Inflamación , Bacterias/metabolismo , Biomarcadores/metabolismo , Macrófagos
4.
Front Microbiol ; 13: 885822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633718

RESUMEN

Airway inflammation and microbiome dysbiosis are hallmarks of cystic fibrosis (CF) lung disease. However, longitudinal studies are needed to decipher which factors contribute to the long-term evolution of these key features of CF. We therefore evaluated the relationship between fluctuation in microbiome and inflammatory parameters in a longitudinal study including a short- (1-year) and a long-term (3+ years) period. We collected 118 sputum samples from 26 CF adult patients and analyzed them by 16S rRNA gene sequencing. We measured the levels of inflammatory cytokines, neutrophil elastase, and anti-proteinases; lung function (FEV1% predicted); and BMI. The longitudinal evolution was analyzed based on (i) the rates of changes; (ii) the intra-patient stability of the variables; and (iii) the dependency of the rates of changes on the baseline values. We observed that the diversity of the microbiome was highly variable over a 1-year period, while the inflammatory markers showed a slower evolution, with significant changes only observed in the 3+ year cohort. Further, the degree of fluctuation of the biomass and the dominance of the microbiome were associated with changes in inflammatory markers, especially IL-1ß and IL-8. This longitudinal study demonstrates for the first time that the long-term establishment and periodical variation of the abundance of a dominant pathogen is associated with a more severe increase in inflammation. This result indicates that a single time point or 1-year study might fail to reveal the correlation between microbial evolution and clinical degradation in cystic fibrosis.

5.
Antioxidants (Basel) ; 10(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34573044

RESUMEN

Chronic rhinosinusitis (CRS) is a characteristic feature of cystic fibrosis (CF) multiorgan disease and develops early in the life of patients with CF. The study aimed to correlate the inflammatory markers and the presence of structural abnormalities detected by MRI in the paranasal sinuses of patients with CF. Methods: Nasal lavage and MRI of the paranasal sinuses was performed in a cohort of 30 CF patients (median age 14 y; range 7-20 y). Morphological abnormalities characteristic of CF were evaluated with a dedicated CRS MRI scoring system and correlated with different inflammation parameters measured in nasal lavage. Inflammation of the paranasal sinuses was positively associated with structural abnormalities in MRI. The concentration of the pro-inflammatory markers neutrophil elastase (NE) and the neutrophil elastase/alpha1-antitrypsin (NE/A1AT) complex correlated significantly with CRS-MRI sum score (p < 0.05, r = 0.416 and p < 0.05, r = 0.366, respectively). S. aureus infection was associated with the increased pro-inflammatory cytokine activity of IL-6 and IL-8, and increased levels of NE/A1AT complex in our patients (p < 0.05, respectively). CRS-MRI sum score and individual sinus MRI scores were positively associated with inflammatory activity as a sign of CRS pathology present in CF.

6.
J Vis Exp ; (171)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096915

RESUMEN

Proteases are regulators of countless physiological processes and the precise investigation of their activities remains an intriguing biomedical challenge. Among the ~600 proteases encoded by the human genome, neutrophil serine proteases (NSPs) are thoroughly investigated for their involvement in the onset and progression of inflammatory conditions including respiratory diseases. Uniquely, secreted NSPs not only diffuse within extracellular fluids but also localize to plasma membranes. During neutrophil extracellular trap (NETs) formation, NSPs become an integral part of the secreted chromatin. Such complex behavior renders the understanding of NSPs pathophysiology a challenging task. Here, detailed protocols are shown to visualize, quantify and discriminate free and membrane-bound neutrophil elastase (NE) and cathepsin G (CG) activities in sputum samples. NE and CG are NSPs whose activities have pleiotropic roles in the pathogenesis of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD): they promote tissue remodeling, regulate downstream immune responses and correlate with lung disease severity. The protocols show how to separate fluid and cellular fraction, as well as the isolation of neutrophils from human sputum for enzymatic activity quantification via small-molecule Förster resonance energy transfer-based (FRET) reporters. To gather specific insights into the relative role of NE and CG activities, a FRET readout can be measured by different technologies: i) in vitro plate reader measurements allow for high-throughput and bulk detection of protease activity; ii) confocal microscopy spatiotemporally resolves membrane-bound activity at the cell surface; iii) small-molecule FRET flow cytometry enables for the rapid evaluation of anti-inflammatory treatments via single-cell protease activity quantification and phenotyping. The implementation of such methods opens the doors to explore NSPs pathobiology and their potential as biomarkers of disease severity for CF and COPD. Given their standardization potential, their robust readout and simplicity of transfer, the described techniques are immediately shareable for implementation across research and diagnostic laboratories.


Asunto(s)
Catepsina G , Fibrosis Quística , Elastasa de Leucocito , Enfermedad Pulmonar Obstructiva Crónica , Fibrosis Quística/enzimología , Humanos , Neutrófilos/enzimología , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Serina Proteasas , Esputo/enzimología
7.
Ann Am Thorac Soc ; 18(6): 971-980, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33600745

RESUMEN

Rationale: Previous studies showed that lumacaftor-ivacaftor therapy results in partial rescue of CFTR (cystic fibrosis [CF] transmembrane conductance regulator) activity and a moderate improvement of spirometry in Phe508del homozygous patients with CF. However, the effects of lumacaftor-ivacaftor on lung clearance index (LCI), lung morphology and perfusion detected by chest magnetic resonance imaging (MRI), and effects on the airway microbiome and inflammation remain unknown. Objectives: To investigate the effects of lumacaftor-ivacaftor on LCI, lung MRI scores, and airway microbiome and inflammation. Methods: In this prospective observational study we assessed clinical outcomes including spirometry and body mass index, LCI, lung MRI scores, sputum microbiome, and proinflammatory cytokines in 30 Phe508del homozygous patients with CF 12 years and older before and 8-16 weeks after initiation of lumacaftor-ivacaftor therapy. Results: Lumacaftor-ivacaftor had no effects on forced expiratory volume in 1 second (FEV1% predicted) (1.7%; 95% confidence interval [CI], -1.0% to 4.3%; P = 0.211) but improved LCI (-1.6; 95% CI, -2.6 to -0.5; P < 0.01) and MRI morphology (-1.3; 95% CI, -2.3 to -0.3; P < 0.05) and perfusion score (-1.2; 95% CI, -2.3 to -0.2; P < 0.05) in our study cohort. Furthermore, lumacaftor-ivacaftor decreased the total bacterial load (-1.8; 95% CI, -3.3 to -0.34; P < 0.05) and increased the Shannon diversity of the airway microbiome (0.4; 95% CI, 0.1 to 0.8; P < 0.05), and reduced IL-1ß (interleukin-1ß) concentration (median change, -324.2 pg/ml; 95% CI, -938.7 to 290.4 pg/ml; P < 0.05) in sputum of Phe508del homozygous patients. Conclusions: This study shows that lumacaftor-ivacaftor has beneficial effects on lung ventilation, morphology, and perfusion, as well as on the airway microbiome and inflammation in Phe508del homozygous patients. Our results suggest that LCI and MRI may be more sensitive than FEV1% predicted to detect response to CFTR modulator therapy in patients with chronic CF lung disease. Clinical trial registered with ClinicalTrials.gov (NCT02807415).


Asunto(s)
Fibrosis Quística , Microbiota , Aminofenoles/uso terapéutico , Aminopiridinas , Benzodioxoles , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Mutación , Estudios Prospectivos , Quinolonas
8.
J Cyst Fibros ; 20(5): 754-760, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33431308

RESUMEN

Airway dysbiosis has been associated with lung disease severity in patients with cystic fibrosis (CF). However, the relationship between dysbiosis, airway inflammation and lung function impairement remains poorly understood. The aim of this study was therefore to determine how the structure of the sputum microbiota, airway inflammation markers and spirometry are related in patients with CF. Sputum samples were collected from 106 CF patients between 12 and 72 years. These were analyzed by 16S rRNA gene amplicon sequencing. Moreover, levels of pro-inflammatory cytokines (IL-1ß, IL-8, IL-6 and TNF-α) and Neutrophil elastase (NE) were determined. The relationship between the microbiota, inflammation markers and forced expiratory volume in one second percent predicted (FEV1% predicted) was evaluated by multi-parameter analysis. The microbiota α-diversity correlated inverse with inflammation markers IL-1ß, IL-8, TNF-α, NE and positively with FEV1% predicted. Patients could be divided into 7 clusters based on their microbiota structure. The most diverse cluster was defined by oropharyngeal-like flora (OF) while the others were characterized by the dominance of a single pathogen. Patients with the diverse OF microbiota cluster had lower sputum inflammatory markers and higher FEV1% predicted compared to patients with a pathogen-dominated microbiota including Pseudomonas aeruginosa. Our results suggest that the diversity of the airway microbiota is an important biomarker of the severity of airway inflammation linking dysbiosis to lung function decline in patients with CF.


Asunto(s)
Fibrosis Quística/microbiología , Fibrosis Quística/fisiopatología , Disbiosis/microbiología , Disbiosis/fisiopatología , Inflamación/microbiología , Inflamación/fisiopatología , Adolescente , Adulto , Anciano , Biomarcadores , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Esputo/microbiología , Adulto Joven
9.
Front Immunol ; 11: 596, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328066

RESUMEN

Introduction: The responses of cystic fibrosis (CF) airway epithelial cells (AEC) to rhinovirus (RV) infection are likely to contribute to early pathobiology of lung disease with increased neutrophilic inflammation and lower apoptosis reported. Necrosis of AEC resulting in airway inflammation driven by IL-1 signaling is a characteristic finding in CF detectable in airways of young children. Being the most common early-life infection, RV-induced epithelial necrosis may contribute to early neutrophilic inflammation in CF via IL-1 signaling. As little is known about IL-1 and biology of CF lung disease, this study assessed cellular and pro-inflammatory responses of CF and non-CF AEC following RV infection, with the hypothesis that RV infection drives epithelial necrosis and IL-1 driven inflammation. Methods:Primary AEC obtained from children with (n = 6) and without CF (n = 6) were infected with RV (MOI 3) for 24 h and viable, necrotic and apoptotic events quantified via flow cytometry using a seven-step gating strategy (% total events). IL-1α, IL-1ß, IL-1Ra, IL-8, CXCL10, CCL5, IFN-ß, IL-28A, IL-28B, and IL-29 were also measured in cell culture supernatants (pg/mL). Results:RV infection reduced viable events in non-CF AEC (p < 0.05), increased necrotic events in non-CF and CF AEC (p < 0.05) and increased apoptotic events in non-CF AEC (p < 0.05). Infection induced IL-1α and IL-1ß production in both phenotypes (p < 0.05) but only correlated with necrosis (IL-1α: r = 0.80; IL-1ß: r = 0.77; p < 0.0001) in CF AEC. RV infection also increased IL-1Ra in non-CF and CF AEC (p < 0.05), although significantly more in non-CF AEC (p < 0.05). Finally, infection stimulated IL-8 production in non-CF and CF AEC (p < 0.05) and correlated with IL-1α (r = 0.63 & r = 0.74 respectively; p < 0.0001). Conclusions:This study found RV infection drives necrotic cell death in CF AEC. Furthermore, RV induced IL-1 strongly correlated with necrotic cell death in these cells. As IL-1R signaling drives airway neutrophilia and mucin production, these observations suggest RV infection early in life may exacerbate inflammation and mucin accumulation driving early CF lung disease. Since IL-1R can be targeted therapeutically with IL-1Ra, these data suggest a new anti-inflammatory therapeutic approach targeting downstream effects of IL-1R signaling to mitigate viral-induced, muco-inflammatory triggers of early lung disease.


Asunto(s)
Resfriado Común/inmunología , Fibrosis Quística/virología , Interleucina-1/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Preescolar , Resfriado Común/complicaciones , Resfriado Común/patología , Fibrosis Quística/inmunología , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Masculino , Necrosis/patología , Necrosis/virología , Rhinovirus
11.
ACS Cent Sci ; 5(3): 539-548, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30937381

RESUMEN

Muco-obstructive lung diseases feature extensive bronchiectasis due to the uncontrolled release of neutrophil serine proteases into the airways. To assess if cathepsin G (CG) is a novel key player in chronic lung inflammation, we developed membrane-bound (mSAM) and soluble (sSAM) FRET reporters. The probes quantitatively revealed elevated CG activity in samples from 46 patients. For future basic science and personalized clinical applications, we developed a rapid, highly informative, and easily translatable small-molecule FRET flow cytometry assay for monitoring protease activity including cathepsin G. We demonstrated that mSAM distinguished healthy from patient cells by FRET-based flow cytometry with excellent correlation to confocal microscopy data.

12.
Am J Respir Crit Care Med ; 199(7): 873-881, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281324

RESUMEN

RATIONALE: Neutrophils are recruited to the airways of individuals with cystic fibrosis (CF). In adolescents and adults with CF, airway neutrophils actively exocytose the primary granule protease elastase (NE), whose extracellular activity correlates with lung damage. During childhood, free extracellular NE activity is measurable only in a subset of patients, and the exocytic function of airway neutrophils is unknown. OBJECTIVES: To measure NE exocytosis by airway neutrophils in relation to free extracellular NE activity and lung damage in children with CF. METHODS: We measured lung damage using chest computed tomography coupled with the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis scoring system. Concomitantly, we phenotyped blood and BAL fluid leukocytes by flow and image cytometry, and measured free extracellular NE activity using spectrophotometric and Förster resonance energy transfer assays. Children with airway inflammation linked to aerodigestive disorder were enrolled as control subjects. MEASUREMENTS AND MAIN RESULTS: Children with CF but not disease control children harbored BAL fluid neutrophils with high exocytosis of primary granules, before the detection of bronchiectasis. This measure of NE exocytosis correlated with lung damage (R = 0.55; P = 0.0008), whereas the molecular measure of free extracellular NE activity did not. This discrepancy may be caused by the inhibition of extracellular NE by BAL fluid antiproteases and its binding to leukocytes. CONCLUSIONS: NE exocytosis by airway neutrophils occurs in all children with CF, and its cellular measure correlates with early lung damage. These findings implicate live airway neutrophils in early CF pathogenesis, which should instruct biomarker development and antiinflammatory therapy in children with CF.


Asunto(s)
Fibrosis Quística/fisiopatología , Exocitosis/fisiología , Lesión Pulmonar/fisiopatología , Neutrófilos/metabolismo , Elastasa Pancreática/metabolismo , Preescolar , Femenino , Humanos , Lactante , Masculino
13.
J Cyst Fibros ; 17(6): 715-722, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29884450

RESUMEN

BACKGROUND: Little is known about the role of interleukin (IL)-1 in the pathogenesis of cystic fibrosis (CF) lung disease. This study investigated the relationship between IL-1 signalling, neutrophilic inflammation and structural lung changes in children with CF. METHODS: Bronchoalveolar lavage fluid (BALf) from 102 children with CF were used to determine IL-1α, IL-1ß, IL-8 levels and neutrophil elastase (NE) activity, which were then correlated to structural lung changes observed on chest computed tomography (CT) scans. RESULTS: IL-1α and IL-1ß were detectable in BAL in absence of infection, increased in the presence of bacterial infection and correlated with IL-8 (p < 0.0001), neutrophils (p < 0.0001) and NE activity (p < 0.01 and p < 0.001). IL-1α had the strongest association with structural lung disease (p < 0.01) in the absence of infection (uninfected: p < 0.01 vs. infected: p = 0.122). CONCLUSION: Our data associates IL-1α with early structural lung damage in CF and suggests this pathway as a novel anti-inflammatory target.


Asunto(s)
Fibrosis Quística , Inflamación/inmunología , Interleucina-1alfa/inmunología , Elastasa de Leucocito/metabolismo , Pulmón , Líquido del Lavado Bronquioalveolar/inmunología , Preescolar , Correlación de Datos , Fibrosis Quística/inmunología , Fibrosis Quística/patología , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Neutrófilos/enzimología , Tomografía Computarizada por Rayos X/métodos
14.
Nat Microbiol ; 3(1): 99-107, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109478

RESUMEN

Cultivation of microbial consortia provides low-complexity communities that can serve as tractable models to understand community dynamics. Time-resolved metagenomics demonstrated that an aerobic cellulolytic consortium cultivated from compost exhibited community dynamics consistent with the definition of an endogenous heterotrophic succession. The genome of the proposed pioneer population, 'Candidatus Reconcilibacillus cellulovorans', possessed a gene cluster containing multidomain glycoside hydrolases (GHs). Purification of the soluble cellulase activity from a 300litre cultivation of this consortium revealed that ~70% of the activity arose from the 'Ca. Reconcilibacillus cellulovorans' multidomain GHs assembled into cellulase complexes through glycosylation. These remarkably stable complexes have supramolecular structures for enzymatic cellulose hydrolysis that are distinct from cellulosomes. The persistence of these complexes during cultivation indicates that they may be active through multiple cultivations of this consortium and act as public goods that sustain the community. The provision of extracellular GHs as public goods may influence microbial community dynamics in native biomass-deconstructing communities relevant to agriculture, human health and biotechnology.


Asunto(s)
Bacterias/clasificación , Bacterias/enzimología , Celulasa/análisis , Celulosa/metabolismo , Consorcios Microbianos/fisiología , Complejos Multienzimáticos/análisis , Filogenia , Bacterias/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/aislamiento & purificación , Evolución Biológica , Celulasa/aislamiento & purificación , Compostaje , Genoma Bacteriano/genética , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/aislamiento & purificación , Glicosilación , Procesos Heterotróficos , Metagenómica , Modelos Biológicos , Complejos Multienzimáticos/aislamiento & purificación , Microbiología del Suelo
15.
mBio ; 7(4)2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27555310

RESUMEN

UNLABELLED: Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T. bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. IMPORTANCE: Cellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose generated communities whose soluble enzymes exhibit differential abilities to hydrolyze crystalline cellulose. Comparative proteomics of these communities identified a protein of glycoside hydrolase family 12 (GH12), a family of proteins previously observed to primarily hydrolyze soluble substrates, as a candidate that accounted for some of the differences in hydrolytic activities. Heterologous expression confirmed that the GH12 protein identified by proteomics was active on crystalline cellulose and hydrolyzed cellulose by a random mechanism, in contrast to most cellulases that act on the crystalline polymer in a processive mechanism.


Asunto(s)
Actinobacteria/enzimología , Actinobacteria/metabolismo , Celulosa/metabolismo , Glicósido Hidrolasas/análisis , Consorcios Microbianos , Proteoma/análisis , Hidrólisis , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA