Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 12(1): 6167, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697315

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) allow investigations in a human cardiac model system, but disorganized mechanics and immaturity of hPSC-CMs on standard two-dimensional surfaces have been hurdles. Here, we developed a platform of micron-scale cardiac muscle bundles to control biomechanics in arrays of thousands of purified, independently contracting cardiac muscle strips on two-dimensional elastomer substrates with far greater throughput than single cell methods. By defining geometry and workload in this reductionist platform, we show that myofibrillar alignment and auxotonic contractions at physiologic workload drive maturation of contractile function, calcium handling, and electrophysiology. Using transcriptomics, reporter hPSC-CMs, and quantitative immunofluorescence, these cardiac muscle bundles can be used to parse orthogonal cues in early development, including contractile force, calcium load, and metabolic signals. Additionally, the resultant organized biomechanics facilitates automated extraction of contractile kinetics from brightfield microscopy imaging, increasing the accessibility, reproducibility, and throughput of pharmacologic testing and cardiomyopathy disease modeling.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Fenómenos Biomecánicos , Calcio/metabolismo , Técnicas de Cultivo de Célula , Dimetilpolisiloxanos , Fenómenos Electrofisiológicos , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Dispositivos Laboratorio en un Chip , Modelos Cardiovasculares , Contracción Miocárdica , Miocardio/citología , Miocardio/metabolismo , Miofibrillas/metabolismo , Reproducibilidad de los Resultados
2.
Stem Cell Reports ; 16(3): 470-477, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33577793

RESUMEN

Disease modeling and pharmaceutical testing using cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) requires accurate assessment of contractile function. Micropatterning iPSC-CMs on elastic substrates controls cell shape and alignment to enable contractile studies, but determinants of intrinsic variability in this system have been incompletely characterized. The objective of this study was to determine the impact of myofibrillar structure on contractile function in iPSC-CMs. Automated analysis of micropatterned iPSC-CMs labeled with a cell-permeant F-actin dye revealed that myofibrillar abundance is widely variable among iPSC-CMs and strongly correlates with contractile function. This variability is not reduced by subcloning from single iPSCs and is independent of the iPSC-CM purification method. Controlling for myofibrillar structure reduces false-positive findings related to batch effect and improves sensitivity for pharmacologic testing and disease modeling. This analysis provides compelling evidence that myofibrillar structure should be assessed concurrently in studies investigating contractile function in iPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Miofibrillas/fisiología , Variación Biológica Poblacional , Diferenciación Celular , Línea Celular , Forma de la Célula , Reacciones Falso Positivas , Humanos , Contracción Miocárdica , Análisis de la Célula Individual/métodos
3.
JCI Insight ; 5(2)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31877118

RESUMEN

Mutations in cardiac myosin binding protein C (MyBP-C, encoded by MYBPC3) are the most common cause of hypertrophic cardiomyopathy (HCM). Most MYBPC3 mutations result in premature termination codons (PTCs) that cause RNA degradation and a reduction of MyBP-C in HCM patient hearts. However, a reduction in MyBP-C has not been consistently observed in MYBPC3-mutant induced pluripotent stem cell cardiomyocytes (iPSCMs). To determine early MYBPC3 mutation effects, we used patient and genome-engineered iPSCMs. iPSCMs with frameshift mutations were compared with iPSCMs with MYBPC3 promoter and translational start site deletions, revealing that allelic loss of function is the primary inciting consequence of mutations causing PTCs. Despite a reduction in wild-type mRNA in all heterozygous iPSCMs, no reduction in MyBP-C protein was observed, indicating protein-level compensation through what we believe is a previously uncharacterized mechanism. Although homozygous mutant iPSCMs exhibited contractile dysregulation, heterozygous mutant iPSCMs had normal contractile function in the context of compensated MyBP-C levels. Agnostic RNA-Seq analysis revealed differential expression in genes involved in protein folding as the only dysregulated gene set. To determine how MYBPC3-mutant iPSCMs achieve compensated MyBP-C levels, sarcomeric protein synthesis and degradation were measured with stable isotope labeling. Heterozygous mutant iPSCMs showed reduced MyBP-C synthesis rates but a slower rate of MyBP-C degradation. These findings indicate that cardiomyocytes have an innate capacity to attain normal MyBP-C stoichiometry despite MYBPC3 allelic loss of function due to truncating mutations. Modulating MyBP-C degradation to maintain MyBP-C protein levels may be a novel treatment approach upstream of contractile dysfunction for HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Predisposición Genética a la Enfermedad/genética , Mutación , Alelos , Línea Celular , Codón sin Sentido , Mutación del Sistema de Lectura , Edición Génica , Heterocigoto , Humanos , Desarrollo de Músculos/genética , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Transcriptoma
4.
Aging Cell ; 11(4): 675-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22587563

RESUMEN

Rapamycin increases lifespan in mice, but whether this represents merely inhibition of lethal neoplastic diseases, or an overall slowing in multiple aspects of aging is currently unclear. We report here that many forms of age-dependent change, including alterations in heart, liver, adrenal glands, endometrium, and tendon, as well as age-dependent decline in spontaneous activity, occur more slowly in rapamycin-treated mice, suggesting strongly that rapamycin retards multiple aspects of aging in mice, in addition to any beneficial effects it may have on neoplastic disease. We also note, however, that mice treated with rapamycin starting at 9 months of age have significantly higher incidence of testicular degeneration and cataracts; harmful effects of this kind will guide further studies on timing, dosage, and tissue-specific actions of rapamycin relevant to the development of clinically useful inhibitors of TOR action.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Sirolimus/farmacología , Neoplasias de las Glándulas Suprarrenales/inducido químicamente , Envejecimiento/fisiología , Animales , Catarata/inducido químicamente , Endometrio/efectos de los fármacos , Endometrio/patología , Femenino , Hígado/efectos de los fármacos , Hígado/patología , Longevidad/efectos de los fármacos , Longevidad/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Actividad Motora/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Especificidad de Órganos , Sirolimus/sangre , Sirolimus/toxicidad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tendones/efectos de los fármacos , Tendones/patología , Testículo/efectos de los fármacos , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA