RESUMEN
Introduction: Semen cryopreservation is the most popular practice for semen production for artificial insemination and in vitro fertilization in cattle. The Seminal plasma contains extracellular vesicles (spEVs) which modulate sperm viability and function during oocyte fecundation. The study of spEVs in frozen-thawed semen doses may yield novel indicators for predicting bull fertility, but the presence of the semen extender may hinder molecular profiling of spEVs. The aim of this study was to provide extensive characterization of EVs isolated from seminal plasma before and after the cryopreservation process and the addition of a commercial animal protein-free semen extender to understand the potential influence of EVs originating from the extender in hindering the use of spEVs derived biomarkers for assessment of bull fertility. Methods: EVs were isolated from the seminal plasma (with or without the extender), from the cryopreserved straw devoid of spermatozoa, and from the extender using two different methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), and characterized for their structure and composition. Results: Physical characterization of EVs showed that size and particle numbers were related to the method of isolation. spEVs were larger but less abundant (UC: 168.9 nm, n = 2.68 × 109; SEC: 197.0 nm, n = 6.42 × 109) compared to extender EVs (UC: 129.0 nm, n = 2.68 × 1011; SEC: 161.8 nm, n = 6.47 × 1011). Western blotting analysis (WB) confirmed the presence of typical EV markers in spEVS: the membrane bound CD9 (25 kDa) and the luminal markers Alix (96 kDa) and TSG101 (48 KDa). Although Transmission Electron Microscopy confirmed the presence of a lipid bilayer structure in all preparations, no specific EV markers were detected in the vesicles isolated from extender when the Single Molecule Array (SiMoa) was used. A total of 724 Bos taurus miRNAs were identified in at least one preparation. The percentage of miRNAs identified in EVs from the extender (0.05%-0.49% of the total reads) was lower than in the preparation containing spEVs (10.56%-63.69% of the total reads). Edge-R identified a total of 111 DE-miRNAs between EVs isolated from the extender by two methods. Among them, 11 DE-miRNAs (bta-miR-11980, bta-miR-11987, bta-miR-12057, bta-miR-1246, bta-miR-125b, bta-miR-181b, bta-miR-2340, bta-miR-2358, bta-miR-2478, bta-miR-2898, and bta-miR-345-3p) were also abundant in EVs isolated from seminal plasma preparations with extender. Conclusion: This study clearly demonstrates that the presence of the extender does not prevent the characterization of spEVs in cryopreserved semen. However, the molecular profiling of spEVs can be influenced by the isolation method used and by the presence of some miRNAs from the extender. Therefore, in such studies, it is advisable to characterize both spEVs and the vesicles isolated from the extender.
RESUMEN
Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.
Asunto(s)
Biomarcadores , Vesículas Extracelulares , Péptidos , Vesículas Extracelulares/metabolismo , Humanos , Péptidos/metabolismo , Biomarcadores/metabolismoRESUMEN
Supramolecular hydrogels play a pivotal role in many fields of biomedical research, including emerging applications in designing advanced tools for point-of-care testing, clinical diagnostics, and lab-on-chip analysis. This review outlines the growing relevance of supramolecular hydrogels in biosensing and bioassay devices, highlighting recent advancements that deliver increased sensitivity, real-time monitoring, and multiplexing capabilities through the distinctive properties of these nanomaterials. Furthermore, the exploration extends to additional applications, such as using hydrogels as three-dimensional matrices for cell-based assays.
Asunto(s)
Bioensayo , Técnicas Biosensibles , Hidrogeles , Hidrogeles/química , Técnicas Biosensibles/métodos , Humanos , Bioensayo/métodos , Nanoestructuras/químicaRESUMEN
SOD1 gene is associated with progressive motor neuron degeneration in the familiar forms of amyotrophic lateral sclerosis. Although studies on mutant human SOD1 transgenic rodent models have provided important insights into disease pathogenesis, they have not led to the discovery of early biomarkers or effective therapies in human disease. The recent generation of a transgenic swine model expressing the human pathological hSOD1G93A gene, which recapitulates the course of human disease, represents an interesting tool for the identification of early disease mechanisms and diagnostic biomarkers. Here, we analyze the activation state of CNS cells in transgenic pigs during the disease course and investigate whether changes in neuronal and glial cell activation state can be reflected by the amount of extracellular vesicles they release in biological fluids. To assess the activation state of neural cells, we performed a biochemical characterization of neurons and glial cells in the spinal cords of hSOD1G93A pigs during the disease course. Quantification of EVs of CNS cell origin was performed in cerebrospinal fluid and plasma of transgenic pigs at different disease stages by Western blot and peptide microarray analyses. We report an early activation of oligodendrocytes in hSOD1G93A transgenic tissue followed by astrocyte and microglia activation, especially in animals with motor symptoms. At late asymptomatic stage, EV production from astrocytes and microglia is increased in the cerebrospinal fluid, but not in the plasma, of transgenic pigs reflecting donor cell activation in the spinal cord. Estimation of EV production by biochemical analyses is corroborated by direct quantification of neuron- and microglia-derived EVs in the cerebrospinal fluid by a Membrane Sensing Peptide enabled on-chip analysis that provides fast results and low sample consumption. Collectively, our data indicate that alteration in astrocytic EV production precedes the onset of disease symptoms in the hSODG93A swine model, mirroring donor cell activation in the spinal cord, and suggest that EV measurements from the cells first activated in the ALS pig model, i.e. OPCs, may further improve early disease detection.
Asunto(s)
Esclerosis Amiotrófica Lateral , Vesículas Extracelulares , Ratones , Animales , Humanos , Porcinos , Superóxido Dismutasa-1/genética , Neuronas Motoras/metabolismo , Superóxido Dismutasa/genética , Ratones Transgénicos , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/patología , Neuroglía/patología , Biomarcadores/metabolismo , Péptidos/metabolismo , Modelos Animales de EnfermedadRESUMEN
The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.
RESUMEN
This paper presents a case study to support the hypothesis that religiosity and spirituality (R/S), as mood balancing factors, could facilitate the recovery process for patients suffering from bipolar disorder (BD) once they have been stabilized and are receiving appropriate support (e.g., in a residential rehabilitative center). After a succinct review of BD and R/S, the patient's medical history and rehabilitation pathway are described, with a particular focus on the role played by R/S. The authors found that in this case, once the patient was stabilized, R/S helped to consolidate her feelings of well-being, increasing her positive perception of social support services and ultimately her self-confidence.
Asunto(s)
Trastorno Bipolar , Espiritualidad , Humanos , Femenino , Identificación Social , Religión , Apoyo Social , ItaliaRESUMEN
The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.
Asunto(s)
Vesículas Extracelulares , Microscopía por Crioelectrón , Vesículas Extracelulares/química , Microscopía de Fuerza Atómica/métodos , Lipopolisacáridos , Lipoproteínas/análisisRESUMEN
The relative contribution of small (sEVs) and large extracellular vesicles (lEVs) to the total plasma procoagulant potential is not yet well defined. Thus, we compared total and TFpos-sEVs and -lEVs isolated from healthy subjects and COVID-19 patients during the acute phase of the infection and after symptom remission in terms of (1) vesicle enumeration using nanoparticle tracking assay, imaging flow cytometry, and TF immunofluorescence localization in a single-vesicle analysis using microarrays; (2) cellular origin; and (3) TF-dependent Xa generation capacity, as well as assessing the contribution of the TF inhibitor, TFPI. In healthy subjects, the plasma concentration of CD9/CD63/CD81pos sEVs was 30 times greater than that of calceinpos lEVs, and both were mainly released by platelets. Compared to lEVs, the levels of TFpos-sEVs were 2-fold higher. The TF-dependent Xa generation capacity of lEVs was three times greater than that of sEVs, with the latter being hindered by TFPI. Compared to HSs, the amounts of total and TFpos-sEVs and -lEVs were significantly greater in acute COVID-19 patients, which reverted to the physiological values at the 6-month follow-up. Interestingly, the FXa generation of lEVs only significantly increased during acute infection, with that of sEV being similar to that of HSs. Thus, in both healthy subjects and COVID-19 patients, the TF-dependent procoagulant potential is mostly sustained by large vesicles.
RESUMEN
Introduction: One main limitation in biomarker studies using EVs is the lack of a suitable isolation method rendering high yield and purity samples in a quick and easily standardized procedure. Here we report an affinity isolation method with a membrane-sensing peptide (MSP) derived from bradykinin. Methods: We designed a protocol based on agarose beads carrying cation chelates to specifically bind to the 6His-tagged membrane-sensing peptide. This approach presents several advantages: 1) cation-carrying agaroses are widely used and standardized for His-tagged protein isolation, 2) the affinity protocol can be performed in small volumes, feasible and manageable for clinical routine and 3) elution with imidazole or EDTA allows a gentle and easy recovery without EV damage, facilitating subsequent characterization and functional analyses. Results: The optimized final procedure incubates 0.5 mg of peptide for 10 min with 10 µL of Long-arm Cobalt agarose before an overnight incubation with concentrated cell conditioned medium. EV downstream analyses can be directly performed on the agarose beads adding lysis or nucleic-acid extraction buffers, or gently eluted with imidazole or EDTA, rendering a fully competent EV preparation. Discussion: This new isolation methodology is based on the recognition of general membrane characteristics independent of surface markers. It is thus unbiased and can be used in any species EV sample, even in samples from animal or plant species against which no suitable antibodies exist. Being an affinity method, the sample handling protocol is very simple, less time-consuming, does not require specialized equipment and can be easily introduced in a clinical automated routine. We demonstrated the high purity and yield of the method in comparison with other commercially available kits. This method can also be scale up or down, with the possibility of analyzing very low amounts of sample, and it is compatible with any downstream analyses thanks to the gentle elution procedure.
RESUMEN
Persistent post-breeding induced endometritis (PPBIE) is considered a major cause of subfertility in mares. It consists of persistent or delayed uterine inflammation in susceptible mares. There are many options for the treatment of PPBIE, but in this study, a novel approach aimed at preventing the onset of PPBIE was investigated. Stallion semen was supplemented with extracellular vesicles derived from amniotic mesenchymal stromal cells (AMSC-EVs) at the time of insemination to prevent or limit the development of PPBIE. Before use in mares, a dose-response curve was produced to evaluate the effect of AMSC-EVs on spermatozoa, and an optimal concentration of 400 × 106 EVs with 10 × 106 spermatozoa/mL was identified. At this concentration, sperm mobility parameters were not negatively affected. Sixteen susceptible mares were enrolled and inseminated with semen (n = 8; control group) or with semen supplemented with EVs (n = 8; EV group). The supplementation of AMSC-EVs to semen resulted in a reduction in polymorphonuclear neutrophil (PMN) infiltration as well as intrauterine fluid accumulation (IUF; p < 0.05). There was a significant reduction in intrauterine cytokine levels (p < 0.05) for TNF-α and IL-6 and an increase in anti-inflammatory IL-10 in mares in the EV group, suggesting successful modulation of the post-insemination inflammatory response. This procedure may be useful for mares susceptible to PPBIE.
Asunto(s)
Endometritis , Enfermedades de los Caballos , Humanos , Masculino , Caballos , Animales , Femenino , Endometritis/prevención & control , Endometritis/veterinaria , Inseminación Artificial/veterinaria , Inseminación Artificial/métodos , Semen , Enfermedades de los Caballos/prevención & control , Antiinflamatorios/farmacología , Susceptibilidad a EnfermedadesRESUMEN
Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, 3D droplet microarrays, where hydrogels are used as matrices to stably entrap biomolecules onto analytical surfaces, potentially provide relevant advantages over conventional 2D assays, such as increased loading capacity, lower nonspecific binding, and enhanced signal-to-noise ratio. Here, we describe a hybrid hydrogel composed of a self-assembling peptide and commercial agarose (AG) as a suitable matrix for 3D microarray bioassays. The hybrid hydrogel is printable and self-adhesive and allows analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Hidrogeles , COVID-19/diagnóstico , Humanos , Hidrogeles/química , Inmunoensayo , Péptidos/química , Cementos de Resina , SARS-CoV-2 , SefarosaRESUMEN
In SARS-CoV-2 pandemic scenario, the identification of rapid methods to detect antibodies against coronavirus has been a wide and urgent issue. Epitope mapping on peptide microarrays is a rapid way to identify sequences with a high immunoreactivity. The process begins with a proteome-wide screening, based on immune affinity; the use of a high-density microarray is followed by a validation phase, where a restricted panel of probes is tested using peptide microarrays; peptide sequences are immobilized through a click-based strategy.COVID-19-positive sera are tested and immuno-domains regions are identified on SARS-CoV-2 spike (S), nucleocapsid (N) protein, and Orf1ab polyprotein. An epitope on N protein (region 155-171) provided good diagnostic performance in discriminating COVID-19-positive vs. healthy individuals. Using this sequence, 92% sensitivity and 100% specificity are reached for IgG detection in COVID-19 samples, and no cross-reactivity with common cold coronaviruses is detected. Overall, epitope 155-171 from N protein represents a promising candidate for further development and rapid implementation in serological tests.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , Mapeo Epitopo , Epítopos , Humanos , Inmunidad , Inmunoglobulina G , Poliproteínas , Proteoma , SARS-CoV-2/genética , Glicoproteína de la Espiga del CoronavirusRESUMEN
Analytical platforms for small extracellular vesicle (sEV) high-throughput analysis are highly desirable. These bionanoparticles present fairly distinctive lipid membrane features including high curvature, lipid-packing defects, and a relative abundance in lipids. sEV membrane could be considered as a "universal" marker, complementary or alternative to traditional surface-associated proteins. Here, we describe the use of membrane-sensing peptides as a new, highly efficient ligand to directly integrate sEV capturing and analysis on a microarray platform.
Asunto(s)
Vesículas Extracelulares , Péptidos , Vesículas Extracelulares/metabolismo , Ligandos , Lípidos , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Péptidos/metabolismoRESUMEN
Seminal plasma contains extracellular vesicles (EVs) that vehicle RNA, proteins, and other molecules able to influence the biological function of sperm. The aim of this study was to improve the fertilizing capacity of male gametes of low-fertility bulls using EVs isolated by ultracentrifugation from the seminal plasma of a bull of proven fertility. After dose-response curve, 10×106 sperm of low-fertility bulls were co-incubated for an hour with 400×106 EVs/ml. In addition, it has been verified that the incorporation of EVs, which takes place in the sperm midpiece, is maintained for 5 hours and even after cryopreservation. Subsequently, the spermatozoa of low-fertility bulls, with EVs incorporated, were used for the in vitro production of embryos. The rate of blastocyst at seventh day yield in vitro, with the use of sperm with EVs incorporated, increased by about twice the yield obtained with the same sperm in the absence of EVs: bulls having an average embryonic yield of 6.41±1.48%, 10.32±4.34% and 10.92±0.95% improved their yield to 21.21±1.99%, 22.17±6.09% and 19.99±5.78%, respectively (P<0.05). These encouraging results suggest that it might be possible to keep breeding bulls with poor fertility. Further studies will be needed to evaluate the in vivo fertility of sperm treated with EVs and understand how the content of EVs is involve in the sperm-vesicle interaction and in the improved sperm performance.
RESUMEN
Unlike humans and many other mammalian species, conventional in vitro fertilization (IVF) in equine species is not successful. To mimic in vitro equine spermatozoon-oviduct interaction as close as possible to that which occurs in vivo, extracellular vesicles (EVs) secreted by the female genital tract were used. Three female genital tracts were collected at slaughterhouse from mares in late estrus. Ipsilateral proximal and apical horn endometrial explants were digested with collagenase and trypsin and cells obtained were cultured on insert system to allow their polarization. Ipsilateral oviducts were squeezed out to obtain spheroids. To produce EVs, proximal and apical horn endometrial cells and oviductal spheroids were cultured for three days in serum free medium. To trace interaction between spermatozoa and EVs by fluorescence microscopy, EVs were differently labeled. Pooled samples of ejaculated spermatozoa from three stallions were incubated in capacitating medium (CM) for 6 h and to induce hyperactivation for other 6 h in CM supplemented with different kind of EVs alone or in combination. A control was performed in absence of EVs. Sperm were assessed for motility by CASA system, EV incorporation by confocal microscopy and acrosomal reaction (AR) by staining with FITC-PNA/PI. In vitro fertilization was performed, and presumed zygotes were subjected to chromatin configuration. The results show that incorporation of EVs of the proximal horn does not take place, while apical horn EVs are incorporated in the head of the spermatozoon in 4 h. The EVs of oviductal spheroids are incorporated in the middle tract in 1 h. The rate of AR with EVs of the apical horn and oviductal spheroids were respectively 50.25% and 57.14%. When these EVs were added in combination, the rate of AR was 71.42%. In the control, the rate of AR was of 15%. After in vitro fertilization, 44% of oocytes showed male and female pronuclei, whereas no fertilization is obtained in the control. In conclusion, EVs from apical horn and oviduct could be involved in cell trafficking during equine semen hyperactivation, and their possible use in vitro could facilitate the development of equine reproductive biotechnologies.
Asunto(s)
Oviductos , Semen , Humanos , Caballos , Masculino , Animales , Femenino , Oviductos/metabolismo , Espermatozoides/fisiología , Oocitos/fisiología , Trompas Uterinas , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Capacitación Espermática/fisiología , MamíferosRESUMEN
Shape memory alloys (SMAs) and ferromagnetic shape memory alloys (FeSMAs) have recently attracted interest for solid state refrigeration applications. Among NiMnGa-based quaternary systems, NiMnGaCu exhibits an interesting giant magnetocaloric effect thanks to the overlapping of the temperatures related to the magnetic transition and the thermoelastic martensitic transformation (TMT); in particular, for compositions with Cu content of approximately 6 at%. In the present work, we investigated the improvement effect of TMT on the total entropy change (ΔS) in the elastocaloric performances of polycrystalline Ni50Mn18.5Cu6.5Ga25 at% alloy samples, just above room temperature. We report an extensive calorimetric and thermomechanical characterization to explore correlations between microstructural properties induced by the selected thermal treatment and elastocaloric response, aiming at providing the basis to develop more efficient materials based on this quaternary system. Both ΔT and ΔS values obtained from mechanical curves at different temperatures and strain recovery tests under fixed load vs. T were considered. Maximum values of ΔS = 55.9 J/KgK and ΔT = 4.5 K were attained with, respectively, a stress of 65 MPa and strain of 4%. The evaluation of the coefficient of performance (COP) was carried out from a cyclic test.
RESUMEN
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Asunto(s)
Bison , Vesículas Extracelulares , MicroARNs , Animales , Búfalos/genética , Búfalos/metabolismo , Bovinos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Líquido Folicular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estaciones del AñoRESUMEN
Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.
Asunto(s)
COVID-19 , Vesículas Extracelulares , Biomarcadores/metabolismo , COVID-19/diagnóstico , Vesículas Extracelulares/metabolismo , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , SARS-CoV-2 , Tromboplastina/metabolismoRESUMEN
Canonical immunoassays rely on highly sensitive and specific capturing of circulating biomarkers by interacting biomolecular baits. In this frame, bioprobe immobilization in spatially discrete three-dimensional (3D) spots onto analytical surfaces by hydrogel encapsulation was shown to provide relevant advantages over conventional two-dimensional (2D) platforms. Yet, the broad application of 3D systems is still hampered by hurdles in matching their straightforward fabrication with optimal functional properties. Herein, we report on a composite hydrogel obtained by combining a self-assembling peptide (namely, Q3 peptide) with low-temperature gelling agarose that is proved to have simple and robust application in the fabrication of microdroplet arrays, overcoming hurdles and limitations commonly associated with 3D hydrogel assays. We demonstrate the real-case scenario feasibility of our 3D system in the profiling of Covid-19 patients' serum IgG immunoreactivity, which showed remarkably improved signal-to-noise ratio over canonical assays in the 2D format and exquisite specificity. Overall, the new two-component hydrogel widens the perspectives of hydrogel-based arrays and represents a step forward towards their routine use in analytical practices.
Asunto(s)
COVID-19/diagnóstico , Inmunoensayo/métodos , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Humanos , Hidrogeles/química , Inmunoglobulina G/inmunología , Péptidos/química , Péptidos/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , SefarosaRESUMEN
Chagas disease (CD) is a vector-borne parasitosis, caused by the protozoan parasite Trypanosoma cruzi, that affects millions of people worldwide. Although endemic in South America, CD is emerging throughout the world due to climate change and increased immigratory flux of infected people to non-endemic regions. Containing of the diffusion of CD is challenged by the asymptomatic nature of the disease in early infection stages and by the lack of a rapid and effective diagnostic test. With the aim of designing new serodiagnostic molecules to be implemented in a microarray-based diagnostic set-up for early screening of CD, herein, we report the recombinant production of the extracellular domain of a surface membrane antigen from T. cruzi (TcSMP) and confirm its ability to detect plasma antibodies from infected patients. Moreover, we describe its high-resolution (1.62 Å) crystal structure, to which in silico epitope predictions were applied in order to locate the most immunoreactive regions of TcSMP in order to guide the design of epitopes that may be used as an alternative to the full-length antigen for CD diagnosis. Two putative, linear epitopes, belonging to the same immunogenic region, were synthesized as free peptides, and their immunological properties were tested in vitro. Although both peptides were shown to adopt a structural conformation that allowed their recognition by polyclonal antibodies raised against the recombinant protein, they were not serodiagnostic for T. cruzi infections. Nevertheless, they represent good starting points for further iterative structure-based (re)design cycles.