Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Nano Lett ; 19(9): 6078-6086, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31434484

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDs) draw strong interest in materials science, with applications in optoelectronics and many other fields. Good performance requires high carrier concentrations and long lifetimes. However, high concentrations accelerate energy exchange between charged particles by Auger-type processes, especially in TMDs where many-body interactions are strong, thus facilitating carrier trapping. We report time-resolved optical pump-THz probe measurements of carrier lifetimes as a function of carrier density. Surprisingly, the lifetime reduction with increased density is very weak. It decreases only by 20% when we increase the pump fluence 100 times. This unexpected feature of the Auger process is rationalized by our time-domain ab initio simulations. The simulations show that phonon-driven trapping competes successfully with the Auger process. On the one hand, trap states are relatively close to band edges, and phonons accommodate efficiently the electronic energy during the trapping. On the other hand, trap states localize around defects, and the overlap of trapped and free carriers is small, decreasing carrier-carrier interactions. At low carrier densities, phonons provide the main charge trapping mechanism, decreasing carrier lifetimes compared to defect-free samples. At high carrier densities, phonons suppress Auger processes and lower the dependence of the trapping rate on carrier density. Our results provide theoretical insights into the diverse roles played by phonons and Auger processes in TMDs and generate guidelines for defect engineering to improve device performance at high carrier densities.

3.
Nat Commun ; 8(1): 1745, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170416

RESUMEN

Photo-induced non-radiative energy dissipation is a potential pathway to induce structural-phase transitions in two-dimensional materials. For advancing this field, a quantitative understanding of real-time atomic motion and lattice temperature is required. However, this understanding has been incomplete due to a lack of suitable experimental techniques. Here, we use ultrafast electron diffraction to directly probe the subpicosecond conversion of photoenergy to lattice vibrations in a model bilayered semiconductor, molybdenum diselenide. We find that when creating a high charge carrier density, the energy is efficiently transferred to the lattice within one picosecond. First-principles nonadiabatic quantum molecular dynamics simulations reproduce the observed ultrafast increase in lattice temperature and the corresponding conversion of photoenergy to lattice vibrations. Nonadiabatic quantum simulations further suggest that a softening of vibrational modes in the excited state is involved in efficient and rapid energy transfer between the electronic system and the lattice.

4.
J Phys Chem B ; 120(6): 1158-68, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26783685

RESUMEN

In liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ∼1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant.

5.
Proc Natl Acad Sci U S A ; 112(24): 7444-8, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034277

RESUMEN

There is a fundamental interest in studying photoinduced dynamics in nanoparticles and nanostructures as it provides insight into their mechanical and thermal properties out of equilibrium and during phase transitions. Nanoparticles can display significantly different properties from the bulk, which is due to the interplay between their size, morphology, crystallinity, defect concentration, and surface properties. Particularly interesting scenarios arise when nanoparticles undergo phase transitions, such as melting induced by an optical laser. Current theoretical evidence suggests that nanoparticles can undergo reversible nonhomogenous melting with the formation of a core-shell structure consisting of a liquid outer layer. To date, studies from ensembles of nanoparticles have tentatively suggested that such mechanisms are present. Here we demonstrate imaging transient melting and softening of the acoustic phonon modes of an individual gold nanocrystal, using an X-ray free electron laser. The results demonstrate that the transient melting is reversible and nonhomogenous, consistent with a core-shell model of melting. The results have implications for understanding transient processes in nanoparticles and determining their elastic properties as they undergo phase transitions.

6.
J Synchrotron Radiat ; 22(3): 503-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931060

RESUMEN

The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Rayos Láser , Aceleradores de Partículas/instrumentación , Espectrometría por Rayos X/instrumentación , Rayos X , California , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Iluminación/instrumentación
7.
Faraday Discuss ; 171: 439-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415305

RESUMEN

Femtosecond time resolved pump-probe protein X-ray crystallography requires highly accurate measurements of the photoinduced structure factor amplitude differences. In the case of femtosecond photolysis of single P63 crystals of the Photoactive Yellow Protein, it is shown that photochemical dynamics place a considerable restraint on the achievable time resolution due to the requirement to stretch and add second order dispersion in order to generate threshold concentration levels in the interaction region. Here, we report on using a 'quasi-cw' approach to use the rotation method with monochromatic radiation and 2 eV bandwidth at 9.465 keV at the Linac Coherent Light Source operated in SASE mode. A source of significant Bragg reflection intensity noise is identified from the combination of mode structure and jitter with very small mosaic spread of the crystals and very low convergence of the XFEL source. The accuracy with which the three dimensional reflection is approximated by the 'quasi-cw' rotation method with the pulsed source is modelled from the experimentally collected X-ray pulse intensities together with the measured rocking curves. This model is extended to predict merging statistics for recently demonstrated self seeded mode generated pulse train with improved stability, in addition to extrapolating to single crystal experiments with increased mosaic spread. The results show that the noise level can be adequately modelled in this manner, indicating that the large intensity fluctuations dominate the merged signal-to-noise (I/σI) value. Furthermore, these results predict that using the self seeded mode together with more mosaic crystals, sufficient accuracy may be obtained in order to resolve typical photoinduced structure factor amplitude differences, as taken from representative synchrotron results.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/química , Relación Señal-Ruido
8.
Rev Sci Instrum ; 85(6): 063106, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985798

RESUMEN

A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ~100 µm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 µm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

9.
J Phys Chem A ; 117(4): 735-40, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23281652

RESUMEN

X-ray free electron lasers (XFELs) deliver short (<100 fs) and intense (∼10(12) photons) pulses of hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring high-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics convoluted with the overall time resolution. The resulting time constant is ∼160 fs.

10.
Opt Lett ; 37(24): 5073-5, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23258009

RESUMEN

We present a spectrometer setup based on grating dispersion for hard x-ray free-electron lasers. This setup consists of a focusing spectrometer grating and a charge-integrating microstrip detector. Measurement results acquired at Linac Coherent Light Source are presented, demonstrating noninvasive monitoring of single-shot spectra with a resolution of 2.0×10(-4) ±0.3×10(-4) at photon energy of 6 keV with more than 95% transmission of the main beam.

11.
Nat Commun ; 3: 947, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22781760

RESUMEN

The high photon flux and femtosecond pulse duration of hard X-ray free-electron lasers have spurred a large variety of novel and fascinating experiments in physical, chemical and biological sciences. Many of these experiments depend fundamentally on a clean, well-defined wavefront. Here we explore the wavefront properties of hard X-ray free-electron laser radiation by means of a grating interferometer, from which we obtain shot-to-shot wavefront information with an excellent angular sensitivity on the order of ten nanoradian. The wavefront distortions introduced by optical elements are observed in-situ and under operational conditions. The source-point position and fluctuations are measured with unprecedented accuracy in longitudinal and lateral direction, both during nominal operation and as the X-ray free-electron laser is driven into saturation.

12.
Phys Rev Lett ; 108(8): 087601, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22463572

RESUMEN

We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond time scales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

13.
J Synchrotron Radiat ; 12(Pt 2): 177-92, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15728970

RESUMEN

Ultrafast X-ray experiments at synchrotron sources hold tremendous promise for measuring the atomistic dynamics of materials under a wide variety of transient conditions. In particular, the marriage of synchrotron radiation and ultrafast laser technology is opening up a new frontier of materials research. Structural changes initiated by femtosecond laser pulses can be tracked in real time using time-resolved X-ray diffraction on picosecond time scales or shorter. Here, research at the Advanced Photon Source is described, illustrating the opportunities for ultrafast diffraction with some recent work on the generation of impulsive strain, coherent phonon generation and supersonic diffusion of electron-hole plasmas. The flexibility of time-resolved Bragg and Laue diffraction geometries are both utilized to illuminate the strain generation and evolution process. Time-resolved X-ray science will become increasingly important with the construction of linac-based ultrafast X-ray sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA