Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Cell Sci ; 137(15)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120594

RESUMEN

Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.


Asunto(s)
Citoesqueleto de Actina , Actinas , Células Eucariotas , Actinas/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/citología , Animales , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Eucariontes/metabolismo , Eucariontes/genética , Evolución Molecular , Evolución Biológica , Transducción de Señal
2.
Curr Biol ; 34(7): 1469-1478.e6, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38490202

RESUMEN

The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Virulencia/genética , Quitridiomicetos/genética , Micosis/microbiología , Anfibios/microbiología , Genotipo , Virus ADN
3.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260630

RESUMEN

Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it impossible to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria uses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.

4.
Proc Natl Acad Sci U S A ; 121(4): e2317928121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236738

RESUMEN

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Quitridiomicetos/genética , Anuros , Anfibios/microbiología , Micosis/microbiología , Transformación Genética
5.
Curr Biol ; 33(24): R1284-R1286, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113837

RESUMEN

The actin cytoskeleton is a protein polymer system that underlies a wide variety of eukaryotic phenotypes. A new study reports that diversity in a key actin regulator, the Arp2/3 complex, drives species-specific sperm development within the Drosophila lineage.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Semen , Animales , Masculino , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Semen/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/genética
6.
Mol Biol Cell ; 34(12): pe6, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37906436

RESUMEN

Many eukaryotic cells, including animal cells and unicellular amoebae, use dynamic-actin networks to crawl across solid surfaces. Recent discoveries of actin-dependent crawling in additional lineages have sparked interest in understanding how and when this type of motility evolved. Tracing the evolution of cell crawling requires understanding the molecular mechanisms underlying motility. Here we outline what is known about the diversity and evolution of the molecular mechanisms that drive cell motility, with a focus on actin-dependent crawling. Classic studies and recent work have revealed a surprising number of distinct mechanical modes of actin-dependent crawling used by different cell types and species to navigate different environments. The overlap in actin network regulators driving multiple types of actin-dependent crawling, along with cortical-actin networks that support the plasma membrane in these cells, suggest that actin motility and cortical actin networks might have a common evolutionary origin. The rapid development of additional evolutionarily diverse model systems, advanced imaging technologies, and CRISPR-based genetic tools, is opening the door to testing these and other new ideas about the evolution of actin-dependent cell crawling.


Asunto(s)
Actinas , Animales , Actinas/metabolismo , Movimiento Celular , Membrana Celular/metabolismo
7.
Curr Biol ; 33(16): 3325-3337.e5, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478864

RESUMEN

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.


Asunto(s)
Dictyostelium , Citosol/metabolismo , Concentración Osmolar , Equilibrio Hidroelectrolítico , Vacuolas/metabolismo , Eucariontes , Agua/metabolismo
8.
Access Microbiol ; 5(5)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323946

RESUMEN

Chytrid fungi play key ecological roles in aquatic ecosystems, and some species cause a devastating skin disease in frogs and salamanders. Additionally, chytrids occupy a unique phylogenetic position- sister to the well-studied Dikarya (the group including yeasts, sac fungi, and mushrooms) and related to animals- making chytrids useful for answering important evolutionary questions. Despite their importance, little is known about the basic cell biology of chytrids. A major barrier to understanding chytrid biology has been a lack of genetic tools with which to test molecular hypotheses. Medina and colleagues recently developed a protocol for Agrobacterium -mediated transformation of Spizellomyces punctatus. In this manuscript, we describe the general procedure including planning steps and expected results. We also provide in-depth, step-by-step protocols and video guides for performing the entirety of this transformation procedure on protocols.io (dx.doi.org/10.17504/protocols.io.x54v9dd1pg3e/v1).

9.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909496

RESUMEN

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.

10.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179219

RESUMEN

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Asunto(s)
Micosis , Animales , Humanos , Micosis/microbiología , Hongos , Ecosistema , Canadá , Plantas
11.
Curr Biol ; 32(12): 2765-2771.e4, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35472310

RESUMEN

The frog-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is decimating amphibian populations around the world.1-4Bd has a biphasic life cycle, alternating between motile zoospores that disperse within aquatic environments and sessile sporangia that grow within the mucus-coated skin of amphibians.5,6 Zoospores lack cell walls and swim rapidly through aquatic environments using a posterior flagellum and crawl across solid surfaces using actin structures similar to those of human cells.7,8Bd transitions from this motile dispersal form to its reproductive form by absorbing its flagellum, rearranging its actin cytoskeleton, and rapidly building a chitin-based cell wall-a process called "encystation."5-7 The resulting sporangium increases in volume by two or three orders of magnitude while undergoing rounds of mitosis without cytokinesis to form a large ceonocyte. The sporangium then cellurizes by dividing its cytoplasm into dozens of new zoospores. After exiting the sporangium through a discharge tube onto the amphibian skin, daughter zoospores can then reinfect the same individual or find a new host.5 Although encystation is critical to Bd growth, whether and how this developmental transition is triggered by external signals was previously unknown. We discovered that exposure to amphibian mucus triggers rapid and reproducible encystation within minutes. This response can be recapitulated with purified mucin, the bulk component of mucus, but not by similarly viscous methylcellulose or simple sugars. Mucin-induced encystation does not require gene expression but does require surface adhesion, calcium signaling, and modulation of the actin cytoskeleton. Mucus-induced encystation may represent a key mechanism for synchronizing Bd development with the arrival at the host.


Asunto(s)
Anfibios , Quitridiomicetos , Moco , Anfibios/microbiología , Animales , Anuros , Quitridiomicetos/fisiología , Mucinas , Moco/química , Piel
12.
Curr Biol ; 32(6): 1247-1261.e6, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35139359

RESUMEN

Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic ß-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and ß-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.


Asunto(s)
Microtúbulos , Naegleria , Huso Acromático , Tubulina (Proteína) , Eucariontes , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/fisiología , Mitosis , Naegleria/citología , Naegleria/genética , Huso Acromático/química , Huso Acromático/genética , Tubulina (Proteína)/genética
13.
Curr Protoc ; 1(12): e309, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870903

RESUMEN

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a causative agent of chytridiomycosis, a skin disease associated with amphibian population declines around the world. Despite the major impact Bd is having on global ecosystems, much of Bd's basic biology remains unstudied. In addition to revealing mechanisms driving the spread of chytridiomycosis, studying Bd can shed light on the evolution of key fungal traits because chytrid fungi, including Bd, diverged before the radiation of the Dikaryotic fungi (multicellular fungi and yeast). Studying Bd in the laboratory is, therefore, of growing interest to a wide range of scientists, ranging from herpetologists and disease ecologists to molecular, cell, and evolutionary biologists. This protocol describes how to maintain developmentally synchronized liquid cultures of Bd for use in the laboratory, how to grow Bd on solid media, as well as cryopreservation and revival of frozen stocks. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Reviving cryopreserved Bd cultures Basic Protocol 2: Establishing synchronized liquid cultures of Bd Basic Protocol 3: Regular maintenance of synchronous Bd in liquid culture Alternate Protocol 1: Regular maintenance of asynchronous Bd in liquid culture Basic Protocol 4: Regular maintenance of synchronous Bd on solid medium Alternate Protocol 2: Starting a culture on solid medium from a liquid culture Basic Protocol 5: Cryopreservation of Bd.


Asunto(s)
Quitridiomicetos , Anfibios , Animales , Batrachochytrium , Ecosistema , Laboratorios
14.
Curr Protoc ; 1(11): e308, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34826344

RESUMEN

Correlating the location of subcellular structures with dynamic cellular behaviors is difficult when working with organisms that lack the molecular genetic tools needed for expressing fluorescent protein fusions. Here, we describe a protocol for fixing, permeabilizing, and staining cells in a single step while imaging on a microscope. In contrast to traditional, multi-step fixing and staining protocols that take hours, the protocol outlined here achieves satisfactory staining within minutes. This approach takes advantage of well-characterized small molecules that stain specific subcellular structures, including nuclei, mitochondria, and actin networks. Direct visualization of the entire process allows for rapid optimization of cell fixation and staining, as well as straightforward identification of fixation artifacts. Moreover, live imaging prior to fixation reveals the dynamic history of cellular features, making it particularly useful for model systems without the capacity for expressing fluorescent protein fusions. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Fixing, permeabilizing, and staining mammalian cells in one step on the microscope.


Asunto(s)
Colorantes , Mitocondrias , Animales , Microscopía Fluorescente , Coloración y Etiquetado
15.
Curr Biol ; 31(7): R353-R355, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33848494

RESUMEN

Cell motility is critical for animal biology, but its evolutionary history is unclear. A new study reports blebbing motility - a form of cell crawling - in the closest living relative of animals, suggesting that the unicellular ancestors of animals could crawl.


Asunto(s)
Evolución Biológica , Animales
16.
Curr Biol ; 31(6): 1192-1205.e6, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33561386

RESUMEN

Cells from across the eukaryotic tree use actin polymer networks for a wide variety of functions, including endocytosis, cytokinesis, and cell migration. Despite this functional conservation, the actin cytoskeleton has undergone significant diversification, highlighted by the differences in the actin networks of mammalian cells and yeast. Chytrid fungi diverged before the emergence of the Dikarya (multicellular fungi and yeast) and therefore provide a unique opportunity to study actin cytoskeletal evolution. Chytrids have two life stages: zoospore cells that can swim with a flagellum and sessile sporangial cells that, like multicellular fungi, are encased in a chitinous cell wall. Here, we show that zoospores of the amphibian-killing chytrid Batrachochytrium dendrobatidis (Bd) build dynamic actin structures resembling those of animal cells, including an actin cortex, pseudopods, and filopodia-like spikes. In contrast, Bd sporangia assemble perinuclear actin shells and actin patches similar to those of yeast. The use of specific small-molecule inhibitors indicate that nearly all of Bd's actin structures are dynamic and use distinct nucleators: although pseudopods and actin patches are Arp2/3 dependent, the actin cortex appears formin dependent and actin spikes require both nucleators. Our analysis of multiple chytrid genomes reveals actin regulators and myosin motors found in animals, but not dikaryotic fungi, as well as fungal-specific components. The presence of animal- and yeast-like actin cytoskeletal components in the genome combined with the intermediate actin phenotypes in Bd suggests that the simplicity of the yeast cytoskeleton may be due to evolutionary loss.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Quitridiomicetos/clasificación , Quitridiomicetos/metabolismo , Evolución Molecular , Anfibios/microbiología , Animales
17.
PLoS One ; 15(10): e0240480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33079945

RESUMEN

Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.


Asunto(s)
Anfibios/microbiología , Antifúngicos/farmacología , Batrachochytrium/efectos de los fármacos , Batrachochytrium/crecimiento & desarrollo , Micología/métodos , Animales , Batrachochytrium/genética , Bleomicina/farmacología , Cinamatos/farmacología , Pruebas Diagnósticas de Rutina , Evaluación Preclínica de Medicamentos , Higromicina B/análogos & derivados , Higromicina B/farmacología , Pruebas de Sensibilidad Microbiana , Neomicina/farmacología , Puromicina/farmacología , Pirrolidinonas/farmacología , Selección Genética
18.
Sci Rep ; 10(1): 15145, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934254

RESUMEN

Two species of parasitic fungi from the phylum Chytridiomycota (chytrids) are annihilating global amphibian populations. These chytrid species-Batrachochytrium dendrobatidis and B. salamandrivorans-have high rates of mortality and transmission. Upon establishing infection in amphibians, chytrids rapidly multiply within the skin and disrupt their hosts' vital homeostasis mechanisms. Current disease models suggest that chytrid fungi locate and infect their hosts during a motile, unicellular 'zoospore' life stage. Moreover, other chytrid species parasitize organisms from across the tree of life, making future epidemics in new hosts a likely possibility. Efforts to mitigate the damage and spread of chytrid disease have been stymied by the lack of knowledge about basic chytrid biology and tools with which to test molecular hypotheses about disease mechanisms. To overcome this bottleneck, we have developed high-efficiency delivery of molecular payloads into chytrid zoospores using electroporation. Our electroporation protocols result in payload delivery to between 75 and 97% of living cells of three species: B. dendrobatidis, B. salamandrivorans, and a non-pathogenic relative, Spizellomyces punctatus. This method lays the foundation for molecular genetic tools needed to establish ecological mitigation strategies and answer broader questions in evolutionary and cell biology.


Asunto(s)
Anfibios/crecimiento & desarrollo , Enfermedades de los Animales/epidemiología , Quitridiomicetos/patogenicidad , Electroporación/métodos , Micosis/veterinaria , Esporas Fúngicas/aislamiento & purificación , Anfibios/microbiología , Animales , Interacciones Huésped-Patógeno , Micosis/microbiología , Esporas Fúngicas/fisiología
19.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32960946

RESUMEN

Much of our understanding of actin-driven phenotypes in eukaryotes has come from the "yeast-to-human" opisthokont lineage and the related amoebozoa. Outside of these groups lies the genus Naegleria, which shared a common ancestor with humans >1 billion years ago and includes the "brain-eating amoeba." Unlike nearly all other known eukaryotic cells, Naegleria amoebae lack interphase microtubules; this suggests that actin alone drives phenotypes like cell crawling and phagocytosis. Naegleria therefore represents a powerful system to probe actin-driven functions in the absence of microtubules, yet surprisingly little is known about its actin cytoskeleton. Using genomic analysis, microscopy, and molecular perturbations, we show that Naegleria encodes conserved actin nucleators and builds Arp2/3-dependent lamellar protrusions. These protrusions correlate with the capacity to migrate and eat bacteria. Because human cells also use Arp2/3-dependent lamellar protrusions for motility and phagocytosis, this work supports an evolutionarily ancient origin for these processes and establishes Naegleria as a natural model system for studying microtubule-independent cytoskeletal phenotypes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular , Microtúbulos/fisiología , Naegleria/fisiología , Fagocitosis , Proteínas Protozoarias/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Proteínas Protozoarias/genética
20.
Elife ; 92020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32392127

RESUMEN

Chytrids are early-diverging fungi that share features with animals that have been lost in most other fungi. They hold promise as a system to study fungal and animal evolution, but we lack genetic tools for hypothesis testing. Here, we generated transgenic lines of the chytrid Spizellomyces punctatus, and used fluorescence microscopy to explore chytrid cell biology and development during its life cycle. We show that the chytrid undergoes multiple rounds of synchronous nuclear division, followed by cellularization, to create and release many daughter 'zoospores'. The zoospores, akin to animal cells, crawl using actin-mediated cell migration. After forming a cell wall, polymerized actin reorganizes into fungal-like cortical patches and cables that extend into hyphal-like structures. Actin perinuclear shells form each cell cycle and polygonal territories emerge during cellularization. This work makes Spizellomyces a genetically tractable model for comparative cell biology and understanding the evolution of fungi and early eukaryotes.


Asunto(s)
Quitridiomicetos/citología , Quitridiomicetos/crecimiento & desarrollo , Quitridiomicetos/genética , Actinas/metabolismo , Evolución Biológica , Ciclo Celular , Movimiento Celular , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Microorganismos Modificados Genéticamente , Mitosis , Morfogénesis , Esporas Fúngicas/fisiología , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA