Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Abdom Radiol (NY) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115682

RESUMEN

PURPOSE: Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). MATERIALS AND METHODS: In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. RESULTS: In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. CONCLUSIONS: Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.

2.
Insights Imaging ; 15(1): 170, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971903

RESUMEN

OBJECTIVES: This study aims to investigate how radiomics analysis can help understand the association between plaque texture, epicardial adipose tissue (EAT), and cardiovascular risk. Working with a Photon-counting CT, which exhibits enhanced feature stability, offers the potential to advance radiomics analysis and enable its integration into clinical routines. METHODS: Coronary plaques were manually segmented in this retrospective, single-centre study and radiomic features were extracted using pyradiomics. The study population was divided into groups according to the presence of high-risk plaques (HRP), plaques with at least 50% stenosis, plaques with at least 70% stenosis, or triple-vessel disease. A combined group with patients exhibiting at least one of these risk factors was formed. Random forest feature selection identified differentiating features for the groups. EAT thickness and density were measured and compared with feature selection results. RESULTS: A total number of 306 plaques from 61 patients (mean age 61 years +/- 8.85 [standard deviation], 13 female) were analysed. Plaques of patients with HRP features or relevant stenosis demonstrated a higher presence of texture heterogeneity through various radiomics features compared to patients with only an intermediate stenosis degree. While EAT thickness did not significantly differ, affected patients showed significantly higher mean densities in the 50%, HRP, and combined groups, and insignificantly higher densities in the 70% and triple-vessel groups. CONCLUSION: The combination of a higher EAT density and a more heterogeneous plaque texture might offer an additional tool in identifying patients with an elevated risk of cardiovascular events. CLINICAL RELEVANCE STATEMENT: Cardiovascular disease is the leading cause of mortality globally. Plaque composition and changes in the EAT are connected to cardiac risk. A better understanding of the interrelation of these risk indicators can lead to improved cardiac risk prediction. KEY POINTS: Cardiac plaque composition and changes in the EAT are connected to cardiac risk. Higher EAT density and more heterogeneous plaque texture are related to traditional risk indicators. Radiomics texture analysis conducted on PCCT scans can help identify patients with elevated cardiac risk.

3.
Front Med (Lausanne) ; 11: 1407235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903806

RESUMEN

Purpose: This study compares phantom-based variability of extracted radiomics features from scans on a photon counting CT (PCCT) and an experimental animal PET/CT-scanner (Albira II) to investigate the potential of radiomics for translation from animal models to human scans. While oncological basic research in animal PET/CT has allowed an intrinsic comparison between PET and CT, but no 1:1 translation to a human CT scanner due to resolution and noise limitations, Radiomics as a statistical and thus scale-independent method can potentially close the critical gap. Methods: Two phantoms were scanned on a PCCT and animal PET/CT-scanner with different scan parameters and then the radiomics parameters were extracted. A Principal Component Analysis (PCA) was conducted. To overcome the limitation of a small dataset, a data augmentation technique was applied. A Ridge Classifier was trained and a Feature Importance- and Cluster analysis was performed. Results: PCA and Cluster Analysis shows a clear differentiation between phantom types while emphasizing the comparability of both scanners. The Ridge Classifier exhibited a strong training performance with 93% accuracy, but faced challenges in generalization with a test accuracy of 62%. Conclusion: These results show that radiomics has great potential as a translational tool between animal models and human routine diagnostics, especially using the novel photon counting technique. This is another crucial step towards integration of radiomics analysis into clinical practice.

4.
Diagnostics (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893656

RESUMEN

The clinical use of photon-counting CT (PCCT) allows for the generation of virtual non-contrast (VNC) series from contrast-enhanced images. In routine clinical practice, specific issues such as ruling out acute bleeding require non-contrast images. The aim of this study is to evaluate the use of PCCT-derived VNC reconstructions in abdominal imaging. PCCT scans of 17 patients including early arterial, portal venous and native sequences were enrolled. VNC reconstructions have been calculated. In every sequence and VNC reconstruction, 10 ROIs were measured (portal vein, descending aorta, inferior vena cava, liver parenchyma, spleen parenchyma, erector spinae muscle, subcutaneous adipose tissue, first lumbar vertebral body, air, and psoas muscle) and density values were compared. The VNC reconstructions show significant changes in density compared to the contrast-enhanced images. However, there were no significant differences present between the true non-contrast (TNC) and any VNC reconstructions in the observed organs and vessels. Significant differences (p < 0.05) between the measured mean density values in the TNC versus VNC reconstructions were found in fat and bone tissue. The PCCT-derived VNC reconstructions seemed to be comparable to the TNC images, despite some deviations shown in the adipose tissue and bone structures. However, the further benefits in terms of specific clinical issues need to be evaluated.

5.
Front Neurol ; 15: 1324074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699058

RESUMEN

Objective: Endovascular thrombectomy (EVT) is the standard of care for acute large vessel occlusion stroke. Recently, the ANGEL-ASPECT and SELECT 2 trials showed improved outcomes in patients with acute ischemic Stroke presenting with large infarcts. The cost-effectiveness of EVT for this subpopulation of stroke patients has only been calculated using data from the previously published RESCUE-Japan LIMIT trial. It is, therefore, limited in its generalizability to an international population. With this study we primarily simulated patient-level costs to analyze the economic potential of EVT for patients with large ischemic stroke from a public health payer perspective based on the recently published data and secondarily identified determinants of cost-effectiveness. Methods: Costs and outcome of patients treated with EVT or only with the best medical care based on the recent prospective clinical trials ANGEL-ASPECT, SELECT2 and RESCUE-Japan LIMIT. A A Markov model was developed using treamtment outcomes derived from the most recent available literature. Deterministic and probabilistic sensitivity analyses addressed uncertainty. Results: Endovascular treatment resulted in an incremental gain of 1.32 QALYs per procedure with cost savings of $17,318 per patient. Lifetime costs resulted to be most sensitive to the costs of the endovascular procedure. Conclusion: EVT is a cost-saving (i.e., dominant) strategy for patients presenting with large ischemic cores defined by inclusion criteria of the recently published ANGEL-ASPECT, SELECT2, and RESCUE-Japan LIMIT trials in comparison to best medical care in our simulation. Prospective data of individual patients need to be collected to validate these results.

6.
Eur J Radiol ; 175: 111448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574510

RESUMEN

PURPOSE: Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD: In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS: A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS: The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.


Asunto(s)
Artefactos , Radiografía Torácica , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Rayos X/métodos , Radiografía Torácica/métodos , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Fotones , Reproducibilidad de los Resultados
7.
Diagnostics (Basel) ; 14(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38535045

RESUMEN

OBJECTIVES: The aim of this study was to analyze the extent of dental metal artifacts in virtual monoenergetic (VME) images, as they often compromise image quality by obscuring soft tissue affecting vascular attenuation reducing sensitivity in the detection of dissections. METHODS: Neck photon-counting CT datasets of 50 patients undergoing contrast-enhanced trauma CT were analyzed. Hyperattenuation and hypoattenuation artifacts, muscle with and without artifacts and vessels with and without artifacts were measured at energy levels from 40 keV to 190 keV. The corrected artifact burden, corrected image noise and artifact index were calculated. We also assessed subjective image quality on a Likert-scale. RESULTS: Our study showed a lower artifact burden and less noise in artifact-affected areas above the energy levels of 70 keV for hyperattenuation artifacts (conventional polychromatic CT images 1123 ± 625 HU vs. 70 keV VME 1089 ± 733 HU, p = 0.125) and above of 80 keV for hypoattenuation artifacts (conventional CT images -1166 ± 779 HU vs. 80 keV VME -1170 ± 851 HU, p = 0.927). Vascular structures were less hampered by metal artifacts than muscles (e.g., corrected artifact burden at 40 keV muscle 158 ± 125 HU vs. vessels -63 ± 158 HU p < 0.001), which was also reflected in the subjective image assessment, which showed better ratings at higher keV values and overall better ratings for vascular structures than for the overall artifact burden. CONCLUSIONS: Our research suggests 70 keV might be the best compromise for reducing metal artifacts affecting vascular structures and preventing vascular contrast if solely using VME reconstructions. VME imaging shows only significant effects on the general artifact burden. Vascular structures generally experience fewer metal artifacts than soft tissue due to their greater distance from the teeth, which are a common source of such artifacts.

8.
Rofo ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479409

RESUMEN

PURPOSE: Due to the increasing number of COVID-19 infections since spring 2020 the patient care workflow underwent changes in Germany. To minimize face-to-face exposure and reduce infection risk, non-time-critical elective medical procedures were postponed. Since ultrasound examinations include non-time-critical elective examinations and often can be substituted by other imaging modalities not requiring direct patient contact, the number of examinations has declined significantly. The aim of this study is to quantify the baseline number of ultrasound examinations in the years before, during, and in the early post-pandemic period of the COVID-19 pandemic (since January 2015 to September 2023), and to measure the number of examinations at different German university hospitals. MATERIALS AND METHODS: The number of examinations was assessed based on a web-based database at all participating clinics at the indicated time points. RESULTS: N = 288 562 sonographic examinations from four sites were included in the present investigation. From January 2020 to June 2020, a significantly lower number of examinations of n = 591.21 vs. 698.43 (p = 0.01) per month and included center was performed. Also, excluding the initial pandemic period until June 2020, significantly fewer ultrasound examinations were performed compared to pre-pandemic years 648.1 vs. 698.4 (p < 0.05), per month and included center, while here differences between the individual centers were observed. In the late phase of the pandemic (n = 681.96) and in the post-pandemic phase (as defined by the WHO criteria from May 2023; n = 739.95), the number of sonographic examinations returned to pre-pandemic levels. CONCLUSION: The decline in the number of sonographic examinations caused by the COVID-19 pandemic was initially largely intentional and can be illustrated quantitatively. After an initial abrupt decline in sonographic examinations, the pre-pandemic levels could not be reached for a long time, which could be due to restructuring of patient care and follow-up treatment. In the post-pandemic phase, the pre-pandemic level has been achieved again. The reasons for a prolonged reduction in ultrasound examinations are discussed in this article. KEY POINTS: · During the pandemic, significantly fewer ultrasound examinations were performed in the included centers.. · The number of examinations could not be reach the pre-pandemic level for a long time, which could be due to restructuring of patient care and follow-up treatment.. · Identifying causes for sonographic exam reduction is crucial in pandemic preparedness to uphold healthcare quality and continuity for all patients.. · The prolonged decline in sonographic examinations during the pandemic does not represent a lasting trend, as evidenced by the return to pre-pandemic levels..

9.
Eur Radiol ; 34(9): 5856-5865, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38388721

RESUMEN

OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. MATERIALS AND METHODS: For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of $0 for the AI were assumed in the base-case scenario. Model uncertainty and costs of the AI system were assessed using deterministic and probabilistic sensitivity analysis. RESULTS: Average total costs were at $8054 for the MRI strategy and $7939 for additional use of an AI-based algorithm. The model yielded a cumulative effectiveness of 8.76 QALYs for the MRI strategy and of 8.77 for the MRI + AI strategy. The economically dominant strategy was MRI + AI. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with the incremental cost-effectiveness ratio (ICER), which represents the incremental cost associated with one additional QALY gained, remaining below the WTP for variation of the input parameters. If increasing costs for the algorithm, the ICER of $0/QALY was exceeded at $115, and the defined WTP was exceeded at $667 for the use of the AI. CONCLUSIONS: This analysis, rooted in assumptions, suggests that the additional use of an AI-based algorithm may be a potentially cost-effective alternative in the differentiation of incidental renal lesions using MRI and needs to be confirmed in the future. CLINICAL RELEVANCE STATEMENT: These results hint at AI's the potential impact on diagnosing renal masses. While the current study urges careful interpretation, ongoing research is essential to confirm and seamlessly integrate AI into clinical practice, ensuring its efficacy in routine diagnostics. KEY POINTS: • This is a model-based study using data from literature where AI has been applied in the diagnostic workup of incidental renal lesions. • MRI + AI has the potential to be a cost-effective alternative in the differentiation of incidental renal lesions. • The additional use of AI can reduce costs in the diagnostic workup of incidental renal lesions.


Asunto(s)
Inteligencia Artificial , Análisis Costo-Beneficio , Hallazgos Incidentales , Neoplasias Renales , Imagen por Resonancia Magnética , Años de Vida Ajustados por Calidad de Vida , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/economía , Neoplasias Renales/diagnóstico por imagen , Evaluación de la Tecnología Biomédica , Algoritmos , Femenino , Masculino
10.
Dentomaxillofac Radiol ; 53(2): 103-108, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330501

RESUMEN

PURPOSE: This study investigated the differences in subjective and objective image parameters as well as dose exposure of photon-counting CT (PCCT) compared to cone-beam CT (CBCT) in paranasal sinus imaging for the assessment of rhinosinusitis and sinonasal anatomy. METHODS: This single-centre retrospective study included 100 patients, who underwent either clinically indicated PCCT or CBCT of the paranasal sinus. Two blinded experienced ENT radiologists graded image quality and delineation of specific anatomical structures on a 5-point Likert scale. In addition, contrast-to-noise ratio (CNR) and applied radiation doses were compared among both techniques. RESULTS: Image quality and delineation of bone structures in paranasal sinus PCCT was subjectively rated superior by both readers compared to CBCT (P < .001). CNR was significantly higher for photon-counting CT (P < .001). Mean effective dose for PCCT examinations was significantly lower than for CBCT (0.038 mSv ± 0.009 vs. 0.14 mSv ± 0.011; P < .001). CONCLUSION: In a performance comparison of PCCT and a modern CBCT scanner in paranasal sinus imaging, we demonstrated that first-use PCCT in clinical routine provides higher subjective image quality accompanied by higher CNR at close to a quarter of the dose exposure compared to CBCT.


Asunto(s)
Senos Paranasales , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada de Haz Cónico/métodos , Senos Paranasales/diagnóstico por imagen , Fantasmas de Imagen
11.
Diagnostics (Basel) ; 14(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337793

RESUMEN

(1) Background: Epicardial adipose tissue influences cardiac biology in physiological and pathological terms. As it is suspected to be linked to coronary artery calcification, identifying improved methods of diagnostics for these patients is important. The use of radiomics and the new Photon-Counting computed tomography (PCCT) may offer a feasible step toward improved diagnostics in these patients. (2) Methods: In this retrospective single-centre study epicardial adipose tissue was segmented manually on axial unenhanced images. Patients were divided into three groups, depending on the severity of coronary artery calcification. Features were extracted using pyradiomics. Mean and standard deviation were calculated with the Pearson correlation coefficient for feature correlation. Random Forest classification was applied for feature selection and ANOVA was performed for group comparison. (3) Results: A total of 53 patients (32 male, 21 female, mean age 57, range from 21 to 80 years) were enrolled in this study and scanned on the novel PCCT. "Original_glrlm_LongRunEmphasis", "original_glrlm_RunVariance", "original_glszm_HighGrayLevelZoneEmphasis", and "original_glszm_SizeZoneNonUniformity" were found to show significant differences between patients with coronary artery calcification (Agatston score 1-99/≥100) and those without. (4) Conclusions: Four texture features of epicardial adipose tissue are associated with coronary artery calcification and may reflect inflammatory reactions of epicardial adipose tissue, offering a potential imaging biomarker for atherosclerosis detection.

12.
Rofo ; 196(1): 25-35, 2024 Jan.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-37793417

RESUMEN

BACKGROUND: Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD: The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience. RESULTS: The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level. Based on the identified literature, PCD-CT phantom measurements and initial clinical studies have demonstrated that the new technology allows for improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION: For clinical practice, the potential benefits include fewer beam hardening artifacts, a radiation dose reduction, and the use of new or combinations of contrast agents. In particular, critical patient groups such as oncological, cardiovascular, lung, and head & neck as well as pediatric patient collectives benefit from the clinical advantages. KEY POINTS: · Photon-counting computed tomography (PCD-CT) is being used for the first time in routine clinical practice, enabling a significant dose reduction in critical patient populations such as oncology, cardiology, and pediatrics.. · Compared to conventional CT, PCD-CT enables a reduction in electronic image noise.. · Due to the spectral data sets, PCD-CT enables fully comprehensive post-processing applications.. CITATION FORMAT: · Hagen F, Soschynski M, Weis M et al. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. Fortschr Röntgenstr 2024; 196: 25 - 34.


Asunto(s)
Radiología , Tomografía Computarizada por Rayos X , Humanos , Niño , Tomografía Computarizada por Rayos X/métodos , Medios de Contraste , Tórax , Fantasmas de Imagen , Pulmón
13.
Rofo ; 196(3): 262-272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37944935

RESUMEN

With personalized tumor therapy, understanding and addressing the heterogeneity of malignant tumors is becoming increasingly important. Heterogeneity can be found within one lesion (intralesional) and between several tumor lesions emerging from one primary tumor (interlesional). The heterogeneous tumor cells may show a different response to treatment due to their biology, which in turn influences the outcome of the affected patients and the choice of therapeutic agents. Therefore, both intra- and interlesional heterogeneity should be addressed at the diagnostic stage. While genetic and biological heterogeneity are important parameters in molecular tumor characterization and in histopathology, they are not yet addressed routinely in medical imaging. This article summarizes the recently established markers for tumor heterogeneity in imaging as well as heterogeneous/mixed response to therapy. Furthermore, a look at emerging markers is given. The ultimate goal of this overview is to provide comprehensive understanding of tumor heterogeneity and its implications for radiology and for communication with interdisciplinary teams in oncology. KEY POINTS:: · Tumor heterogeneity can be described within one lesion (intralesional) or between several lesions (interlesional).. · The heterogeneous biology of tumor cells can lead to a mixed therapeutic response and should be addressed in diagnostics and the therapeutic regime.. · Quantitative image diagnostics can be enhanced using AI, improved histopathological methods, and liquid profiling in the future..


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/terapia , Diagnóstico por Imagen , Oncología Médica , Radiografía
14.
Pediatr Radiol ; 54(1): 58-67, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982901

RESUMEN

BACKGROUND: Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks an effective way to predict its effect. OBJECTIVE: To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion phenotypes by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy. MATERIALS AND METHODS: In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepatoblastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed. RESULTS: Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy (P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 and 0.008, respectively). CONCLUSIONS: This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a proper imaging classification system.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Terapia Neoadyuvante , Hepatoblastoma/diagnóstico por imagen , Hepatoblastoma/tratamiento farmacológico , Radiómica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Fenotipo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico
16.
JAMA Netw Open ; 6(12): e2346113, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055279

RESUMEN

Importance: Postpancreatectomy hemorrhage (PPH) due to postoperative pancreatic fistula (POPF) is a life-threatening complication after pancreatoduodenectomy. However, there is no prediction tool for early identification of patients at high risk of late PPH. Objective: To develop and validate a prediction model for PPH. Design, Setting, and Participants: This retrospective prognostic study included consecutive patients with clinically relevant POPF who underwent pancreatoduodenectomy from January 1, 2009, to May 20, 2023, at the University Hospital Mannheim (derivation cohort), and from January 1, 2012, to May 31, 2022, at the University Hospital Dresden (validation cohort). Data analysis was performed from May 30 to July 29, 2023. Exposure: Clinical and radiologic features of PPH. Main Outcomes and Measures: Accuracy of a predictive risk score of PPH. A multivariate prediction model-the hemorrhage risk score (HRS)-was established in the derivation cohort (n = 139) and validated in the validation cohort (n = 154). Results: A total of 293 patients (187 [64%] men; median age, 69 [IQR, 60-76] years) were included. The HRS comprised 4 variables with associations: sentinel bleeding (odds ratio [OR], 35.10; 95% CI, 5.58-221.00; P < .001), drain fluid culture positive for Candida species (OR, 14.40; 95% CI, 2.24-92.20; P < .001), and radiologic proof of rim enhancement of (OR, 12.00; 95% CI, 2.08-69.50; P = .006) or gas within (OR, 12.10; 95% CI, 2.22-65.50; P = .004) a peripancreatic fluid collection. Two risk categories were identified with patients at low risk (0-1 points) and high risk (≥2 points) to develop PPH. Patients with PPH were predicted accurately in the derivation cohort (C index, 0.97) and validation cohort (C index 0.83). The need for more invasive PPH management (74% vs 34%; P < .001) and severe complications (49% vs 23%; P < .001) were more frequent in high-risk patients compared with low-risk patients. Conclusions and Relevance: In this retrospective prognostic study, a robust prediction model for PPH was developed and validated. This tool may facilitate early identification of patients at high risk for PPH.


Asunto(s)
Candida , Análisis de Datos , Masculino , Humanos , Anciano , Femenino , Estudios Retrospectivos , Factores de Riesgo , Hospitales Universitarios , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología
17.
Front Oncol ; 13: 1292268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130995

RESUMEN

Background: Economic evaluations have become an accepted methodology for decision makers to allocate resources in healthcare systems. Particularly in screening, where short-term costs are associated with long-term benefits, and adverse effects of screening intermingle, cost-effectiveness analyses provide a means to estimate the economic value of screening. Purpose: To introduce the methodology of economic evaluations and to review the existing evidence on cost-effectiveness of MR-based breast cancer screening. Materials and methods: The various concepts and techniques of economic evaluations critical to the interpretation of cost-effectiveness analyses are briefly introduced. In a systematic review of the literature, economic evaluations from the years 2000-2022 are reviewed. Results: Despite a considerable heterogeneity in the reported input variables, outcome categories and methodological approaches, cost-effectiveness analyses report favorably on the economic value of breast MRI screening for different risk groups, including both short- and long-term costs and outcomes. Conclusion: Economic evaluations indicate a strongly favorable economic value of breast MRI screening for women at high risk and for women with dense breast tissue.

18.
J Clin Med ; 12(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137769

RESUMEN

Purpose: Children with congenital diaphragmatic hernia suffer from long-term morbidity, including lung function impairment. Our study aims to analyze lung morphology characteristics via radiomic-assisted extraction of lung features in patients after congenital diaphragmatic hernia repair. Materials and Methods: 72 patients were retrospectively analyzed after approval by the local research ethics committee. All the image data were acquired using a third-generation dual-source CT (SOMATOM Force, Siemens Healthineers, Erlangen, Germany). Dedicated software was used for image analysis, segmentation, and processing. Results: Radiomics analysis of pediatric chest CTs of patients with status after CDH was possible. Between the ipsilateral (side of the defect) and contralateral lung, three shape features and two higher-order texture features were considered statistically significant. Contralateral lungs in patients with and without ECMO treatment showed significant differences in two shape features. Between the ipsilateral lungs in patients with and without the need for ECMO 1, a higher-order texture feature was depicted as statistically significant. Conclusions: By adding quantitative information to the visual assessment of the radiologist, radiomics-assisted feature analysis could become an additional tool in the future to assess the degree of lung hypoplasia in order to further improve the therapy and outcome of CDH patients.

19.
Front Cardiovasc Med ; 10: 1223035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965085

RESUMEN

Introduction: Pericoronary adipose tissue (PCAT) stands in complex bidirectional interaction with the surrounding arteries and is known to be connected to many cardiovascular diseases involving vascular inflammation. PCAT texture may be influenced by other cardiovascular risk factors such as hypercholesterolemia. The recently established photon-counting CT could improve texture analysis and help detect those changes by offering higher spatial resolution and signal-to-noise ratio. Methods: In this retrospective, single-center, IRB-approved study, PCAT of the left and right coronary artery was manually segmented and radiomic features were extracted using pyradiomics. The study population consisted of a test collective and a validation collective. The collectives were each divided into two groups defined by the presence or absence of hypercholesterolemia, taken from self-reported conditions and confirmed by medical records. Mean and standard deviation were calculated with Pearson correlation coefficient for correlation of features and visualized as boxplots and heatmaps using R statistics. Random forest feature selection was performed to identify differentiating features between the two groups. 66 patients were enrolled in this study (34 female, mean age 58 years). Results: Two radiomics features allowing differentiation between PCAT texture of the groups were identified (p-values between 0.013 and 0.24) and validated. Patients with hypercholesterolemia presented with a greater concentration of high-density values as indicated through analysis of specific texture features as "gldm_HighGrayLevelEmphasis" (23.95 vs. 22.99) and "glrlm_HighGrayLevelRunEmphasis" (24.21 vs. 23.31). Discussion: Texture analysis of PCAT allowed differentiation between patients with and without hypercholesterolemia offering a potential imaging biomarker for this specific cardiovascular risk factor.

20.
Cancer Imaging ; 23(1): 95, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798797

RESUMEN

OBJECTIVES: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions. METHODS: In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age [IQR]: 65.39 [56.87, 75.08], 48.4% male) and 47 colorectal cancer patients with 435 lesions (median age [IQR]: 65.79 [56.99, 74.62], 63.8% male) were enrolled. A pretrained nnU-Net performed automated segmentation of 1296 liver lesions. Radiomics features for each lesion were extracted using pyradiomics. The performance of several radiomics-based machine-learning classifiers was investigated for the lesions and compared to an image-based deep-learning approach using a DenseNet-121. The performance was evaluated by AUC/ROC analysis. RESULTS: The radiomics-based K-nearest neighbor classifier showed the best performance on an independent test set with AUC values of 0.87 and an accuracy of 0.67. In comparison, the image-based DenseNet-121-classifier reached an AUC of 0.80 and an accuracy of 0.83. CONCLUSIONS: CT-based radiomics and deep learning can distinguish the etiology of liver metastases from gastrointestinal primary tumors. Compared to deep learning, radiomics based models showed a varying generalizability in distinguishing liver metastases from colorectal cancer and pancreatic adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Aprendizaje Profundo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Estudios Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA