RESUMEN
Recently, the search for materials with high photoelectric conversion efficiency has emerged as a significant research hotspot. Unlike p-n junctions, the bulk photovoltaic effect (BPVE) can also materialize within pure crystals. Here, we propose wurtzite and zinc blende semiconductors without inversion symmetry (AgI, GaAs, CdSe, CdTe, SiGe, ZnSe, and ZnTe) as candidates for achieving the BPVE and investigate the factors that affect the shift current. GaAs with a wurtzite structure exhibits the highest shift current value of 31.8 µA V-2 when spin-orbit coupling is considered. Meanwhile, the peak position of the maximum linear optical conductivity and shift current in the wurtzite structure is lower than that in the zinc blende structure. In addition, we also found that strong covalency within the same main axis group element significantly influences the shift current, exemplified by wurtzite SiGe, which exhibits 15.8 µA V-2. Our research highlights the importance of a smaller band gap, reduced carrier effective mass, and increased covalency in achieving a substantial shift current response. Ultimately, this study provides valuable insights into the interplay of the structural and electronic properties, offering directions for the discovery and design of materials with an enhanced BPVE.
RESUMEN
2D van der Waals (vdW) magnets have recently emerged as a promising material system for spintronic device innovations due to their intriguing phenomena in the reduced dimension and simple integration of magnetic heterostructures without the restriction of lattice matching. However, it is still challenging to realize Curie temperature far above room temperature and controllable magnetic anisotropy for spintronics application in 2D vdW magnetic materials. In this work, the pressure-tuned dome-like ferromagnetic-paramagnetic phase diagram in an iron-based 2D layered ferromagnet Fe3GaTe2 is reported. Continuously tunable magnetic anisotropy from out-of-plane to in-plane direction is achieved via the application of pressure. Such behavior is attributed to the competition between intralayer and interlayer exchange interactions and enhanced DOS near the Fermi level. The study presents the prominent properties of pressure-engineered 2D ferromagnetic materials, which can be used in the next-generation spintronic devices.
RESUMEN
Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V-1 s-1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e-) and almost the highest electrostatic potential difference (ΔΦ) of â¼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]-) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (â¼1014 cm-2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.
RESUMEN
Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of â¼61 mV/decade, and a small gate hysteresis (â¼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.
RESUMEN
Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 µΩâ cm) at room temperature under 9 T in ß-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized ß-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.
RESUMEN
Polarons play a crucial role in energy conversion, but the microscopic mechanism remains unclear since they are susceptible to local atomic structures. Here, by employing ab initio nonadiabatic dynamic simulations, we investigate electron-hole (e-h) nonradiative recombination at the rutile TiO2(110) surface with varied amounts of oxygen vacancies (Vo). The isolated Vo facilitates e-h recombination through forming polarons compared to that in the defect-free surface. However, aggregated Vo forming clusters induce an order-of-magnitude acceleration of polaron diffusion by enhancing phonon excitations, which blocks the defect-mediated recombination and thus prolongs the photocarrier lifetime. We find that photoelectrons are driven to migrate toward the top surface due to polaron formation. Our results show the many-body effects of defects and polaron effects on determining the overall recombination rate, which has been ignored in the Shockley-Read-Hall model. The findings explain the controversial experimental observations and suggest that engineering Vo aggregation would instead improve photocatalysis efficiencies in polaronic materials.
RESUMEN
The electronic properties of hydrogen-terminated biphenylene (BP) segments of different sizes on the sub-nanoscale are explored using density functional theory, and the size dependence of the energy gap is evaluated using a structural parameter as a function of the bond lengths and the electronic density contributions. More importantly, the energy gap is observed to decrease linearly with the reduced hydrogen-to-carbon ratio of the corresponding structures, while the decrease-rate undergoes a diminution of four times at a gap of 0.5 eV due to the transformed distribution of the lowest unoccupied molecular orbital. The results give a deep insight into the size-tunable energy gaps of BPs and provide a possibility for the preparation of hydrogen-terminated carbon materials with a desirable energy gap.
RESUMEN
Single-crystalline high-κ dielectric materials are desired for the development of future two-dimensional (2D) electronic devices. However, curent 2D gate insulators still face challenges, such as insufficient dielectric constant and difficult to obtain free-standing and transferrable ultrathin films. Here, we demonstrate that ultrathin Bi2SiO5 crystals grown by chemical vapor deposition (CVD) can serve as excellent gate dielectric layers for 2D semiconductors, showing a high dielectric constant (>30) and large band gap (~3.8 eV). Unlike other 2D insulators synthesized via in-plane CVD on substrates, vertically grown Bi2SiO5 can be easily transferred onto other substrates by polymer-free mechanical pressing, which greatly facilitates its ideal van der Waals integration with few-layer MoS2 as high-κ dielectrics and screening layers. The Bi2SiO5 gated MoS2 field-effect transistors exhibit an ignorable hysteresis (~3 mV) and low drain induced barrier lowering (~5 mV/V). Our work suggests vertically grown Bi2SiO5 nanoflakes as promising candidates to improve the performance of 2D electronic devices.
RESUMEN
Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.
RESUMEN
The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (â¼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.
RESUMEN
The emergence of intrinsic quantum anomalous Hall (QAH) insulators with a long-range ferromagnetic (FM) order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Built upon atom-thin Chern insulator monolayer MnBr3, we propose that the topologically nontrivial electronic states can be systematically tuned by inherent magnetic orders and external electric/optical fields in stacked Chern insulator bilayers. The FM bilayer illustrates a high-Chern-number QAH state characterized by both quantized Hall plateaus and specific magneto-optical Kerr angles. In antiferromagnetic bilayers, Berry curvature singularity induced by electrostatic fields or lasers emerges, which further leads to a novel implementation of the layer Hall effect depending on the chirality of irradiated circularly polarized light. These results demonstrate that abundant tunable topological properties can be achieved in stacked Chern insulator bilayers, thereby suggesting a universal routine to modulate d-orbital-dominated topological Dirac fermions.
RESUMEN
The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel1,2. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration1,2. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface3,4. Here, we report a facile synthesis of a single-crystalline high-κ (κ of roughly 16.5) van der Waals layered dielectric Bi2SeO5. The centimetre-scale single crystal of Bi2SeO5 can be efficiently exfoliated to an atomically flat nanosheet as large as 250 × 200 µm2 and as thin as monolayer. With these Bi2SeO5 nanosheets as dielectric and encapsulation layers, 2D materials such as Bi2O2Se, MoS2 and graphene show improved electronic performances. For example, in 2D Bi2O2Se, the quantum Hall effect is observed and the carrier mobility reaches 470,000 cm2 V-1 s-1 at 1.8 K. Our finding expands the realm of dielectric and opens up a new possibility for lowering the gate voltage and power consumption in 2D electronics and integrated circuits.
Asunto(s)
Grafito , Silicio , Electrónica , SemiconductoresRESUMEN
Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20â¯000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of â¼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff â¼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.
Asunto(s)
Bismuto , Enfermedades Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamaño de la Partícula , Telurio/químicaRESUMEN
Heteroepitaxy with large lattice mismatch remains a great challenge for high-quality epifilm growth. Although great efforts have been devoted to epifilm growth with an in-plane lattice mismatch, the epitaxy of 2D layered crystals on stepped substrates with a giant out-of-plane lattice mismatch is seldom reported. Here, taking the molecular-beam epitaxy of 2D semiconducting Bi2 O2 Se on 3D SrTiO3 substrates as an example, a step-climbing epitaxy growth strategy is proposed, in which the n-th (n = 1, 2, 3 ) epilayer climbs the step with height difference from out-of-plane lattice mismatch and continues to grow the n+1-th epilayer. Step-climbing epitaxy can spontaneously relax and release the strain from the out-of-plane lattice mismatch, which ensures the high quality of large-area epitaxial films. Wafer-scale uniform 2D Bi2 O2 Se single-crystal films with controllable thickness can be obtained via step-climbing epitaxy. Most notably, one-unit-cell Bi2 O2 Se films (1.2 nm thick) exhibit a high Hall mobility of 180 cm2 V-1 s-1 at room temperature, which exceeds that of silicon and other 2D semiconductors with comparable thickness. As an out-of-plane lattice mismatch is generally present in the epitaxy of layered materials, the step-climbing epitaxy strategy expands the existing epitaxial growth theory and provides guidance toward the high-quality synthesis of layered materials.
RESUMEN
Recent years have witnessed increasing popularity in the use of automatic written evaluation (AWE) in the writing context for its immediacy and high accessibility for EFL learners. Meanwhile, the effectiveness of the AWE tool in writing accuracy and ability is fully appreciated by the previous researchers. However, students' engagement in the revising process, key factors that mediate the uptake of feedback, and learning effect have not aroused much attention as expected. Thus, this review aimed to depict a broader picture of learners' behavioral, cognitive, and affective engagement in AWE feedback to bring a further understanding of how learners process the feedback and make the decision from a psychological perspective. Firstly, widely adopted targets in AWE research are discussed. Then, the definition of learner engagement and its constructs are presented based on existing research. After that, the link between AWE feedback and learner engagement has been taken into consideration. Finally, conclusions and suggestions are provided for insightful studies.
RESUMEN
Magnetic anisotropy is essential for permanent magnets to maintain their magnetization along specific directions. Understanding and controlling the magnetic anisotropy on a single-molecule scale are challenging but of fundamental importance for the future's spintronic technology. Here, by using scanning tunneling microscopy (STM), we demonstrated the ability to control the magnetic anisotropy by tuning the ligand field at the single-molecule level. We constructed a molecular magnetic complex with a single Mn atom and an organic molecule (4,4'-biphenyldicarbonitrile) as a ligand via atomic manipulation. Inelastic tunneling spectra (IETS) show that the Mn complex has much larger axial magnetic anisotropy than individual Mn atoms, and the anisotropy energy can be tuned by the coupling strength of the ligand. With density functional theory calculations, we revealed that the enhanced magnetic anisotropy of Mn arising from the carbonitrile ligand provides a prototype for the engineering of the magnetism of quantum devices.
RESUMEN
We exploit a high-performing resistive-type trace oxygen sensor based on 2D high-mobility semiconducting Bi2 O2 Se nanoplates. Scanning tunneling microscopy combined with first-principle calculations confirms an amorphous Se atomic layer formed on the surface of 2D Bi2 O2 Se exposed to oxygen, which contributes to larger specific surface area and abundant active adsorption sites. Such 2D Bi2 O2 Se oxygen sensors have remarkable oxygen-adsorption induced variations of carrier density/mobility, and exhibit an ultrahigh sensitivity featuring minimum detection limit of 0.25â ppm, long-term stability, high durativity, and wide-range response to concentration up to 400â ppm at room temperature. 2D Bi2 O2 Se arrayed sensors integrated in parallel form are found to possess an oxygen detection minimum of sub-0.25â ppm ascribed to an enhanced signal-to-noise ratio. These advanced sensor characteristics involving ease integration show 2D Bi2 O2 Se is an ideal candidate for trace oxygen detection.
RESUMEN
The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.
RESUMEN
Understanding the nonequilibrium dynamics of photoexcited polarons at the atomic scale is of great importance for improving the performance of photocatalytic and solar-energy materials. Using a pulsed-laser-combined scanning tunneling microscopy and spectroscopy, here we succeeded in resolving the relaxation dynamics of single polarons bound to oxygen vacancies on the surface of a prototypical photocatalyst, rutile TiO_{2}(110). The visible-light excitation of the defect-derived polarons depletes the polaron states and leads to delocalized free electrons in the conduction band, which is further corroborated by ab initio calculations. We found that the trapping time of polarons becomes considerably shorter when the polaron is bound to two surface oxygen vacancies than that to one. In contrast, the lifetime of photogenerated free electrons is insensitive to the atomic-scale distribution of the defects but correlated with the averaged defect density within a nanometer-sized area. Those results shed new light on the photocatalytically active sites at the metal-oxide surface.
RESUMEN
Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that Bi2TeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its 'side' surfaces. The mirror symmetry of the crystal structure concurrently classifies it as a topological crystalline insulator. We investigated Bi2TeI spectroscopically to show the existence of both two-dimensional Dirac surface states, which are susceptible to mirror symmetry breaking, and one-dimensional channels that reside along the step edges. Their mutual coexistence on the step edge, where both facets join, is facilitated by momentum and energy segregation. Our observation of a dual topological insulator should stimulate investigations of other dual topology classes with distinct surface manifestations coexisting at their boundaries.