Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Pain ; 18(8): 933-946, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28323246

RESUMEN

Cancer-induced bone pain (CIBP) remains a major challenge in advanced cancer patients because of our lack of understanding of its mechanisms. Previous studies have shown the vital role of γ-aminobutyric acid B receptors (GABABRs) in regulating nociception and various neuropathic pain models have shown diminished activity of GABABRs. However, the role of spinal GABABRs in CIBP remains largely unknown. In this study, we investigated the specific cellular mechanisms of GABABRs in the development and maintenance of CIBP in rats. Our behavioral results show that acute as well as chronic intrathecal treatment with baclofen, a GABABR agonist, significantly attenuated CIBP-induced mechanical allodynia and ambulatory pain. The expression levels of GABABRs were significantly decreased in a time-dependent manner and colocalized mostly with neurons and a minority with astrocytes and microglia. Chronic treatment with baclofen restored the expression of GABABRs and markedly inhibited the activation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase and the cAMP-response element-binding protein signaling pathway. PERSPECTIVE: Our findings provide, to our knowledge, the first evidence that downregulation of GABABRs contribute to the development and maintenance of CIBP and restored diminished GABABRs attenuate CIBP-induced pain behaviors at least partially by inhibiting the protein kinase/cAMP-response element-binding protein signaling pathway. Therefore, spinal GABABR may become a potential therapeutic target for the management of CIBP.


Asunto(s)
Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Dolor en Cáncer/patología , Carcinoma/complicaciones , Receptores de GABA-B/metabolismo , Médula Espinal/metabolismo , Animales , Baclofeno/farmacología , Proteína de Unión a CREB/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Agonistas de Receptores GABA-B/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Dimensión del Dolor , Umbral del Dolor/fisiología , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Factores de Tiempo
2.
Exp Neurol ; 263: 39-49, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281485

RESUMEN

Previously, we showed that activation of the spinal CXCL9, 10/CXCR3 pathway mediated bone cancer pain (BCP) in rats. However, the cellular mechanism involved is poorly understood. Here, we found that the activated CXCR3 was co-localized with either neurons, microglia, and astrocytes in the spinal cord, or non-peptidergic-, peptidergic-, and A-type neurons in the dorsal root ganglion. The inoculation of Walker-256 mammary gland carcinoma cells into the rat's tibia induced a time-dependent phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2) in the spinal cord, and CXCR3 was necessary for the phosphorylation of Akt and ERK 1/2. Meanwhile, CXCR3 was co-localized with either pAkt or pERK1/2. Blockage of either Akt or ERK1/2 prevented or reversed the mechanical allodynia in BCP rats. Furthermore, there was cross-activation between PI3K/Akt and Raf/MEK/ERK pathway under the BCP condition. Our results demonstrated that the activation of spinal chemokine receptor CXCR3 mediated BCP through Akt and ERK 1/2 kinase, and also indicated a crosstalk between PI3K/Akt and Raf/MEK/ERK signaling pathways under the BCP condition.


Asunto(s)
Neoplasias Óseas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Dolor/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR3/metabolismo , Animales , Western Blotting , Neoplasias Óseas/complicaciones , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/metabolismo , Inmunohistoquímica , Dolor/etiología , Ratas , Ratas Wistar , Receptor Cross-Talk/fisiología
3.
Exp Neurol ; 255: 71-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24594219

RESUMEN

The etiology of postoperative pain may be different from antigen-induced inflammatory pain and neuropathic pain. However, central neural plasticity plays a key role in incision pain. It is also known that phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (PKB/Akt) are widely expressed in laminae I-IV of the spinal horn and play a critical role in spinal central sensitization. In the present study, we explored the role of PI3K and Akt in incision pain behaviors. Plantar incision induced a time-dependent activation of spinal PI3K-p110γ and Akt, while activated Akt and PI3K-p110γ were localized in spinal neurons or microglias, but not in astrocytes. Pre-treatment with PI3K inhibitors, wortmannin or LY294002 prevented the activation of Akt brought on by plantar incision in a dose-dependent manner. In addition, inhibition of spinal PI3K signaling pathway prevented pain behaviors (dose-dependent) and spinal Fos protein expression caused by plantar incision. These data demonstrated that PI3K signaling mediated pain behaviors caused by plantar incision in mice.


Asunto(s)
Conducta Animal/fisiología , Dolor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Médula Espinal/metabolismo , Androstadienos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cromonas/farmacología , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dimensión del Dolor , Fosforilación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Factores de Tiempo , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA