Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Opt Lett ; 49(11): 3198-3201, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824362

RESUMEN

We demonstrate the direct generation of single-frequency switchable orbital angular momentum (OAM) modes in a 1 µm wavelength range using a Nd:YVO4 microchip laser. The 808 nm laser diode pump beam is shaped into annular through an axicon associated with a lens. By adjusting the diameter and power of the annular pump beam, various OAM modes with different mode volumes can oscillate inside the Nd:YVO4 microchip. Moreover, a single-frequency output is also available due to the short cavity of the microchip. In the proof-of-principle experiment, single-frequency twofold multiplexed OAM modes | ± 1> and | ± 2> are generated, with experimentally measured fidelity higher than 96%. This work presents a compact and versatile single-frequency OAM source and will inspire multiple advanced scenarios ranging from classical to quantum photonics.

2.
Adv Mater ; : e2402885, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753094

RESUMEN

Nonporous adaptive crystals (NACs) are crystalline nonporous materials that can undergo a structural adaptive phase transformation to accommodate specific guest via porous cavity or lattice voids. Most of the NACs are based on pillararenes because of their flexible backbone and intrinsic porous structure. Here a readily prepared organic hydrochloride of 4-(4-(diphenylamino)phenyl)pyridin-1-ium chloride (TPAPyH), exhibiting the solvent dimension-dependent adaptive crystallinity is reported. Wherein it forms a nonporous α crystal in a solvent with larger dimensions, while forming two porous ß and γ crystals capable of accommodating solvent molecules in solvent with small size. Furthermore, the thermal-induced single-crystal-to-single-crystal (SCSC) transition from the ß to α phase can be initiated. Upon exposure to iodine vapor or immersion in aqueous solution, the nonporous α phase transforms to porous ß phase by adsorbing iodine molecules. Owing to the formation of trihalide anion I2Cl- within the crystal cavity, TPAPyH exhibits remarkable performance in iodine storage, with a high uptaking capacity of 1.27 g g-1 and elevated iodine desorption temperature of up to 110 and 82 °C following the first and second adsorption stage. The unexpected adaptivity of TPAPyH inspires the design of NACs for selective adsorption and separation of volatile compound from organic small molecules.

3.
Int J Biol Macromol ; 256(Pt 2): 128440, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016614

RESUMEN

Since many nutrients are highly sensitive, they cannot be absorbed and utilized efficiently by the body. Using nano-delivery systems to encapsulate nutrients is an effective method of solving the problems associated with the application of nutrients at this stage. Polysaccharides, as natural biomaterials, have a unique chemical structure, ideal biocompatibility, biodegradability and low immunogenicity. This makes polysaccharides powerful carriers that can enhance the biological activity of nutrients. However, the true role of polysaccharide-based delivery systems requires an in-depth understanding of the structural and physicochemical characteristics of polysaccharide-based nanodelivery systems, as well as effective modulation of the intestinal delivery mechanism and the latest advances in nano-encapsulation. This review provides an overview of polysaccharide-based nano-delivery systems dependent on different carrier types, emphasizing recent advances in the application of polysaccharides, a biocomposite material designed for nutrient delivery systems. Strategies for polysaccharide-based nano-delivery systems to enhance the bioavailability of orally administered nutrients from the perspective of the intestinal absorption barrier are presented. Characterization methods for polysaccharide-based nano-delivery systems are presented as well as an explanation of the formation mechanisms behind nano-delivery systems from the perspective of molecular forces. Finally, we discussed the challenges currently facing polysaccharide-based nano-delivery systems as well as possible future directions for the future.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas , Nanopartículas/química , Polisacáridos/química , Nutrientes , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos
4.
Opt Lett ; 49(1): 173-176, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134180

RESUMEN

Analyzing the orbital angular momentum (OAM) distribution of a vortex beam is critical for OAM-based applications. Here, we propose a deep residual network (DRN) to model the relationship between characteristics of the multiplexed OAM beam and their complex spectrum. The favorable experimental results show that our proposal can obtain both the intensity and phase terms of multiplexed OAM beams, dubbed complex spectrum, with a wide range of OAM modes, varying in intensity, phase ratio, and mode intervals at high accuracy and real-time speed. Specifically, the root mean square error (RMSE) of intensity and phase spectrum is evaluated as 0.002 and 0.016, respectively, with a response time of only 0.020 s. To the best of our knowledge, this work opens a new sight for fast OAM complex spectrum analysis and paves the way for numerous advanced domains that need real-time OAM complex spectrum diagnostic like ultrahigh-dimensional OAM tailoring.

5.
Opt Express ; 31(21): 35305-35312, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859265

RESUMEN

1.6 µm high-order vortex modes carrying orbital angular momentums (OAMs) play significant roles in long-range Doppler lidars and other remote sensing. Amplification of 1.6 µm high-order vortex modes is an important way to provide high-power laser sources for such lidars and also enable the weak echo signal to be amplified so that it can be analyzed. In this work, we propose a four-pass Er:YAG vortex master-oscillator-power-amplification (MOPA) system to amplify 1.6 µm high-order vortex modes. In the proof-of-concept experiments, 1.6 µm single OAM mode (l = 3) is amplified successfully and the gain ranging from 1.88 to 2.36 is achieved. Multiplexed OAM mode (l=±3) is also amplified with favorable results. This work addresses the issue as the low gain of Er:YAG vortex MOPA, which provides a feasible path for 1.6 µm high-order vortex modes amplification.

6.
Rep Prog Phys ; 86(9)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37343543

RESUMEN

Recently, the remarkable advances in thermally activated delayed fluorescence (TADF) materials have attracted much attention due to their 100% exciton utilization efficiency in organic light-emitting diodes (OLEDs). Although the commercialization of TADF materials is at an early stage, they exhibit enormous potential for next-generation OLEDs due to the comparable electroluminescence performance to metal of their phosphorescent complex counterparts, but without the presence of precious metal elements. This review summarizes the different types of TADF small molecules with various photophysical properties and the state-of-the-art molecular design strategies. Furthermore, the device engineering is discussed, and emerging optoelectronic applications, such as organic light-emitting electrochemical cells, organic lasing, and organic scintillators, are introduced. It is anticipated that this review can clarify the design of efficient TADF emitters and point out the direction of future development.

7.
Biomater Res ; 27(1): 43, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161611

RESUMEN

BACKGROUND: Multi-component nano-delivery systems based on chemotherapy (chemo)- photodynamic therapy (PDT)- chemodynamic therapy (CDT) have gained increased attention as a promising strategy to improve clinical outcomes in cancer treatment. However, there remains a challenge in developing biodegradable, biocompatible, less toxic, yet highly efficient multicomponent nanobased drug delivery systems (DDS). Here, our study presents the screening and development of a novel DDS based on co-assemblies natural small molecule (NSMs). These molecules (oleanolic acid, and betulinic acid) are combined with photosensitizers Chlorine6 (Ce6) and Cu2+ that are encapsulated by tumor cell membranes. This nanocarrier encapsulated in tumor cell membranes achieved good tumor targeting and a significant improvement in tumor accumulation. METHODS: A reprecipitation method was used to prepare the co-assembled nanocarrier, followed by the introduction of Cu2 + into the DDS (OABACe6 NPs). Then, by wrapping the surface of NPs with the cell membranes of 4T1 which is a kind of mouse breast cancer cells (CM@OABACe6/Cu NPs). and analysis of its structure and size distribution with UV-Vis, XPS, FT-IR, SEM, TEM, and DLS. The synergistic effects of in vitro chemotherapy, CDT and PDT and targeting were also validated by cellular and animal studies. RESULTS: It was shown that CM@OABACe6/Cu NPs achieved good tumor targeting and a significant improvement in tumor accumulation. In the composite nano-assembly, the NSMs work together with the Ce6 to provide effective and safe chemo and PDT. Moreover, the effect of reduced PDT due to the depletion of reactive oxygen species (ROS) by excess glutathione (GSH) in the tumor can be counteracted when Cu2 + is introduced. More importantly, it also confers CDT through a Fenton-like catalytic reaction with H2O overexpressed at the tumor site. CONCLUSIONS: By constructing CM@OABACe6/Cu NPs with homologous targeting, we create a triple synergistic platform for cancer therapy using PDT, chemo, and CDT. We propose here a novel combinatorial strategy for designing more naturally co-assembled small molecules, especially for the development of multifunctional synergistic therapies that utilize NSMs.

8.
J Mater Chem B ; 11(21): 4584-4599, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37084077

RESUMEN

Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Preparaciones Farmacéuticas
9.
Acta Pharm Sin B ; 13(2): 879-896, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873187

RESUMEN

Immunotherapy combined with effective therapeutics such as chemotherapy and photodynamic therapy have been shown to be a successful strategy to activate anti-tumor immune responses for improved anticancer treatment. However, developing multifunctional biodegradable, biocompatible, low-toxic but highly efficient, and clinically available transformed nano-immunostimulants remains a challenge and is in great demand. Herein, we report and design of a novel carrier-free photo-chemotherapeutic nano-prodrug COS-BA/Ce6 NPs by combining three multifunctional components-a self-assembled natural small molecule betulinic acid (BA), a water-soluble chitosan oligosaccharide (COS), and a low toxic photosensitizer chlorin e6 (Ce6)-to augment the antitumor efficacy of the immune adjuvant anti-PD-L1-mediated cancer immunotherapy. We show that the designed nanodrugs harbored a smart and distinctive "dormancy" characteristic in chemotherapeutic effect with desired lower cytotoxicity, and multiple favorable therapeutic features including improved 1O2 generation induced by the reduced energy gap of Ce6, pH-responsiveness, good biodegradability, and biocompatibility, ensuring a highly efficient, synergistic photochemotherapy. Moreover, when combined with anti-PD-L1 therapy, both nano-coassembly based chemotherapy and chemotherapy/photodynamic therapy (PDT) could effectively activate antitumor immunity when treating primary or distant tumors, opening up potentially attractive possibilities for clinical immunotherapy.

10.
Opt Lett ; 48(2): 331-334, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638450

RESUMEN

A 1645-nm single-frequency vortex beam with narrow linewidth from an Er:YAG nonplanar ring oscillator (NPRO) using an annular pump beam is demonstrated. The pump beam from a 1532-nm fiber laser is shaped to an annular beam by an axicon. The Er:YAG NPRO generates a 1.96-W single-frequency vortex beam under a pump power of 13 W. The linewidth of the 1645-nm vortex laser is measured as 6 kHz. This work provides a convenient way of single-frequency vortex beam generation.

11.
Foods ; 12(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38231710

RESUMEN

The international community has been paying close attention to the issue of food safety as a matter of public health. The presence of a wide range of contaminants in food poses a significant threat to human health, making it vital to develop detection methods for monitoring these chemical contaminants. Electrochemical sensors using emerging materials have been widely employed to detect food-derived contaminants. Covalent organic frameworks (COFs) have the potential for extensive applications due to their unique structure, high surface area, and tunable pore sizes. The review summarizes and explores recent advances in electrochemical sensors modified with COFs for detecting pesticides, antibiotics, heavy metal ions, and other food contaminants. Furthermore, future challenges and possible solutions will be discussed regarding food safety analysis using COFs.

12.
Opt Express ; 30(19): 34053-34063, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242427

RESUMEN

Optical vortex array has drawn widespread attention since the boom of special applications such as molecular selecting and optical communication. Here, we propose an integrated phase-only scheme to generate multiple multiplexed vortex beams simultaneously, constituting a multiplexed vortex state array, where the spatial position, as well as the corresponding orbital angular momentum (OAM) spectrum, can be manipulated flexibly as desired. Proof-of-concept experiments are carried out and show a few different multiplexed vortex state arrays that fit well with the simulation. Moreover, regarding the array as a data-carrier, a one-to-many multicasting link through multi-state OAM shift keying, a high-dimensional data coding, is also available in free space. In the experiment, four various OAM states are employed and achieve four bits binary symbols, and finally distribute three different images to three separate receivers independently from the same transmitter, showing great potential in the future high-dimensional optical networks.

13.
Opt Lett ; 47(19): 5032-5035, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181179

RESUMEN

Beams carrying orbital angular momentum (OAM) already play significant roles in many domains. Here we propose a practical design of an OAM beam splitter based on a single phase-only multi-ring azimuthal-quadratic diffraction optical element that can sort different OAM components into various spatial positions, and OAM state probing is also achieved. The performance is demonstrated through proof-of-principle experiments and shows favorable results. Furthermore, the intensity proportion of each OAM component, namely the OAM spectrum, is also diagnosed. This work offers high applicability and practicability for the recognition and separation of photon OAM, and thus paves the way for many advanced scenarios such as quantum communication, holographic encryption, and remote sensing.

14.
Opt Lett ; 47(6): 1419-1422, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290328

RESUMEN

Orbital angular momentum (OAM) is one of multiple dimensions of beams. A beam can carry multiple OAM components, and their intensity weights form the OAM spectrum. The OAM spectrum determines complex amplitude distributions of a beam and features unique characteristics. Thus, measuring the OAM spectrum is of great significance, especially for OAM-based applications. Here we employ a deep neural network combined with a phase-only diffraction optical element to measure the OAM spectrum. The diffraction optical element is designed to diffract incident beams into distinct patterns corresponding to OAM distributions. Then, the EfficientNet, a kind of deep neural network, is adjusted to adapt and analyze the diffraction pattern to calculate the OAM spectrum. The favorable experimental results show that our proposal can reconstruct the OAM spectra with high precision and speed, works well for different numbers of OAM channels, and is also robust to Gaussian noise and random zooming. This work opens a new, to the best of our knowledge, ability for OAM spectrum recognition and will find applications in a number of advanced domains including large capacity optical communications, quantum key distribution, optical trapping, rotation detection, and so on.

16.
Opt Express ; 29(7): 10811-10824, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820207

RESUMEN

Optical vortex arrays (OVAs) have successfully aroused substantial interest from researchers for their promising prospects ranging from classical to quantum physics. Previous reported OVAs still show a lack of controllable dimensions which may hamper their applications. Taking an isolated perfect optical vortex (POV) as an array element, whose diameter is independent of its topological charge (TC), this paper proposes combined phase-only holograms to produce sophisticated POV arrays. The contributed scheme enables dynamically controllable multi-ring, TC, eccentricity, size, and the number of optical vortices (OVs). Apart from traditional single ring POV element, we set up a ßg library to obtain optimized double ring POV element. With multiple selective degrees of freedom to be chosen, a series of POV arrays are generated which not only elucidate versatility of the method but also unravel analytical relationships between the set parameters and intensity patterns. More exotic structures are formed like the "Bear POV" to manifest the potential of this approach in tailoring customized structure beams. The experimental results show robust firmness with the theoretical simulations. As yet, these arrays make their public debut so far as we know, and will find miscellaneous applications especially in multi-microparticle trapping, large-capacity optical communications, novel pumping lasers and so on.

17.
J Mater Chem B ; 9(11): 2674-2687, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33662091

RESUMEN

Natural biocompatible materials such as self-assembled natural small molecule products (NSMP) with anticancer activity are of increasing interest for synergistic biomedical applications. Herein, we discovered and developed four new self-assembled tricyclic diterpene acids NSMP with favorable anticancer activity for synergistic and safe antitumor chemotherapy, including dehydroabietic acid, 15-hydroxy-dehydroabietic acid, abietic acid, and 12-hydroxyabietic acid. The self-assembled performance and mechanism of these four compounds with different morphologies were explored in detail by molecular dynamics simulation, and revealed the coplanarity and orderliness of molecular arrangements which are speculated to be responsible for the self-assembly into spheres or rods. The screened and optimized abietic acid (AA) was chosen to prepare the synergistic antitumor drug AA-PTX NPs by co-administration with paclitaxel through multiple hydrogen bonds. The resulting nanodrugs were internalized into cells through a lysosome acidification uptake pathway. The improved water-solubility, significantly enhanced in vitro cytotoxicity, and excellent biosafety, lead to a highly efficient and safe in vivo anticancer efficacy of 81.2% inhibition rate with only three doses. This work provides new insights to explore the self-assembly behavior of small molecules and broadens the types of self-assembled active NSMP, providing a promising perspective for the fabrication of active NSMP mediated medical agents for multiple synergistic therapies.


Asunto(s)
Abietanos/farmacología , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Diterpenos/farmacología , Paclitaxel/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Abietanos/química , Abietanos/aislamiento & purificación , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Simulación de Dinámica Molecular , Estructura Molecular , Paclitaxel/química , Tamaño de la Partícula , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Células Tumorales Cultivadas
18.
Bioact Mater ; 6(2): 529-542, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32995678

RESUMEN

Neuronal mitochondrial dysfunction caused by excessive reactive oxygen species (ROS) is an early event of sporadic Alzheimer's disease (AD), and considered to be a key pathologic factor in the progression of AD. The targeted delivery of the antioxidants to mitochondria of injured neurons in brain is a promising therapeutic strategy for AD. A safe and effective drug delivery system (DDS) which is able to cross the blood-brain barrier (BBB) and target neuronal mitochondria is necessary. Recently, bioactive materials-based DDS has been widely investigated for the treatment of AD. Herein, we developed macrophage (MA) membrane-coated solid lipid nanoparticles (SLNs) by attaching rabies virus glycoprotein (RVG29) and triphenylphosphine cation (TPP) molecules to the surface of MA membrane (RVG/TPP-MASLNs) for functional antioxidant delivery to neuronal mitochondria. According to the results, MA membranes camouflaged the SLNs from being eliminated by RES-rich organs by inheriting the immunological characteristics of macrophages. The unique properties of the DDS after decoration with RVG29 on the surface was demonstrated by the ability to cross the BBB and the selective targeting to neurons. After entering the neurons in CNS, TPP further lead the DDS to mitochondria driven by electric charge. The Genistein (GS)- encapsulated DDS (RVG/TPP-MASLNs-GS) exhibited the most favorable effects on reliveing AD symptoms in vitro and in vivo by the synergies gained from the combination of MA membranes, RVG29 and TPP. These results demonstrated a promising therapeutic candidate for delaying the progression of AD via neuronal mitochondria-targeted delivery by the designed biomimetic nanosystems.

19.
Opt Lett ; 45(22): 6330-6333, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186982

RESUMEN

A laser beam lattice from tailoring spatial dimensions of lights is a kind of structured optical field, which already have found many applications in lots of domains. Here we propose a geometric phase element made from polymerized liquid crystals to transform Gaussian beams into a 64×64 beam lattice with high performance. Different from other geometric phase elements, the proposed element can introduce identical phase modulations for any polarizations, indicating that the beam lattice could be well generated with arbitrary incident homogeneous polarizations but not limited to specific circular polarizations. In the experiment, a 64×64 beam lattice is well generated. It is estimated that the uniformity of the obtained lattice fluctuates about 60% among various incident polarizations, which is very close to the prediction. This work opens a new site for producing high-dimensional beam lattices and will inspire more advanced applications.

20.
Opt Lett ; 45(16): 4626-4629, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32797026

RESUMEN

A resonantly pumped Er:YAG vector laser emitting at 1645 nm with selective polarization states is demonstrated. A compact five-mirror resonator incorporated a pair of quarter-wave plates (QWPs), and a pair of q-plates (QPs) is employed. Cylindrical vector beams of all states on a single high-order Poincaré sphere could be obtained by rotating the QWPs and QPs relatively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA