RESUMEN
INTRODUCTION: Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED: In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION: Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
RESUMEN
Breast cancer development and progression are believed to be a sequential process, from normal to hyperplastic, to in situ, and to invasive and metastatic stages. Given that over 90% of cancer deaths are caused by invasive and metastatic lesions, countless factors and multiple theories have been proposed as the triggering factor for the cascade of actions of cancer invasion. However, those factors and theories are largely based on the studies of cell lines or animal models. In addition, corresponding interventions based on these factors and theories have failed to reduce the incidence rate of invasive and metastatic lesions, suggesting that previous efforts may have failed to arm at the right target. Considering these facts and observations, we are proposing "A focal aberrant degeneration in the myoepithelial cell layer (MECL) as the most likely triggering factor for breast cancer invasion". Our hypothesis is based on our recent studies of breast and multiple other cancers. Our commentary provides the rationale, morphologic, immunohistochemical, and molecular data to support our hypotheses. As all epithelium-derived cancers share a very similar architecture, our hypothesis is likely to be applicable to invasion of all cancer types. We believe that human tissue-derived data may provide a more realistic roadmap to guide the clinic practice.
RESUMEN
Esophageal cancer (EC) is a lethal cancer with an extremely aggressive nature and poor survival rate. However, the molecular mechanisms driving the occurrence and progression of EC are not well understood. MicroRNAs (miRNAs) are small RNA molecules that regulate the expression of protein-coding genes. miRNA-mediated gene regulation plays an important role in EC. By cross-referencing studies from NCBI, we found that microRNA-375 (miR-375) is one of the most frequently downregulated miRNAs in EC. We assessed expression of miR-375 in EC cell lines and primary EC tissues and their matched normal tissues. We found significant downregulation of miR-375 in both cell lines and EC tissues. Forced expression of miR-375 attenuated EC cell proliferation and invasion. Human epidermal growth factor receptor 2 (HER2, ERBB2), a known proto-oncogene, was identified here as one of the potential target genes of miR-375. Ectopic expression of miR-375 significantly suppressed the expression of ERBB2 and subsequently downregulated one of its target genes, vascular endothelial growth factor A (VEGFA), which is related to cancer invasion and metastasis. These findings suggest that miR-375 acts as a tumor suppressor by blocking the ERBB2/VEGFA pathway with the potential to modulate the occurrence and/ or progression of EC.
RESUMEN
Lichen sclerosus (LS) is a chronic inflammatory skin disorder with unknown pathogenesis. The aberrant expression of microRNAs (miRNAs) is considered to exert a crucial role in LS. We used the next-generation sequencing technology (RNASeq) for miRNA profiling and Ingenuity Pathway Analysis (IPA) for molecular network analysis. We performed qRT-PCR, miRNA transfection and Matrigel assays for functional studies. We identified a total of 170 differentially expressed miRNAs between female LS and matched adjacent normal tissue using RNASeq, with 119 upregulated and 51 downregulated. Bioinformatics analysis revealed molecular networks that may shed light on the pathogenesis of LS. We verified the expression of a set of miRNAs that are related to autoimmunity, such as upregulated miR-326, miR-142-5p, miR-155 and downregulated miR-664a-3p and miR-181a-3p in LS tissue compared to the matched adjacent normal tissue. The differentially expressed miRNAs were also verified in blood samples from LS patients compared to healthy female volunteers. Functional studies demonstrated that a forced expression of miR-142-5p in human dermal fibroblast PCS-201-010 cells resulted in decreased cell proliferation and migration. These findings suggest that differentially expressed miRNAs may play an important role in LS pathogenesis; therefore, they could serve as biomarkers for LS management.
Asunto(s)
Biomarcadores/análisis , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Liquen Escleroso y Atrófico/patología , MicroARNs/genética , Piel/metabolismo , Biología Computacional , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Liquen Escleroso y Atrófico/genéticaRESUMEN
Esophageal cancer (EC) is extremely aggressive and has a very poor survival rate. Esophageal squamous cell carcinoma (ESCC) accounts for 80% of all ECs worldwide, with the majority of the remaining 20% being esophageal adenocarcinoma (EAC). Due to its occult and insidious presentation, ESCC is typically diagnosed and treated in its advanced stages, thereby limiting the success of present therapeutic modalities. microRNAs (miRNAs) can function as tumor suppressors or oncogenes, playing critical roles in cancer initiation and progression by regulating target genes in oncogenic pathways. In the current study, we demonstrated that microRNA-196b (miR-196b) is one of the most upregulated miRNAs in both ESCC and EAC. miR-196b was overexpressed in ESCC and EAC cell lines, cellular exosomal RNAs, and ESCC tissue samples. Functional studies revealed that miR-196b acted as an oncomiR by directly targeting a tumor suppressor, ephrin type-A receptor 7 (EPHA7). EPHA7 abrogates the activity of ephrin type-A receptor 2 (EPHA2), a key molecule involved in the epithelial-to-mesenchymal transition (EMT) and MAPK/ERK pathways, mediating resistance to UV and chemoradiotherapy in both ESCC and EAC. Taken together, these findings suggest that miR-196b is a strong candidate molecular target for EC treatment.
RESUMEN
Background: Endometrial cancer (EC) is a major gynecologic adenocarcinoma that arises from the endometrium. While the incidence of EC is on the rise worldwide, survivorship and clinical advancement have considerably lagged compared to other cancers. Given the sensitive nature of the endometrium and its high expression of hormone receptors, hormonal therapy has become a favorable alternative treatment compared to highly toxic chemotherapeutics and radiation therapy. Methods: Clinical samples from patients diagnosed with EC were obtained. ER and PR staining were performed according to the S-P kit, and HER2 staining was carried out according to the UltrasensitiveTM S-P immunohistochemistry kit protocol. Chi-square analysis was conducted using the SPSS. P-values of less than 0.05 were taken as an a priori value for statistical significance. Results: Immunohistochemical (IHC) analysis showed the overall positive expression rates of ER, PR, and HER2 to be 59.8%, 75.0%, and 71.1%, respectively. Significant co-expression was found among all three receptors, suggesting a cooperative, synergistic effect. More importantly, we found that ER expression was correlated with FIGO staging and cervical invasion, whereas PR expression was associated with histologic type. No clinicopathologic features were correlated with HER2 expression, but HER2 positivity was inversely associated with the degree of HER2 overexpression. Conclusions: These results suggest that EC is a heterogeneous disease that may not conform to traditional, prototypically defined subtypes. The status of ER, PR, and HER2 receptors may have the potential to serve as prognostic indicators for EC, but further analysis is needed to ascertain their prognostic significance.
RESUMEN
BACKGROUND: Understanding the molecular alterations associated with breast cancer (BC) progression may lead to more effective strategies for both prevention and management. The current model of BC progression suggests a linear, multistep process from normal epithelial to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS), and then invasive ductal carcinoma (IDC). Up to 20% ADH and 40% DCIS lesions progress to invasive BC if left untreated. Deciphering the molecular mechanisms during BC progression is therefore crucial to prevent over- or under-treatment. Our previous work demonstrated that miR-671-5p serves as a tumor suppressor by targeting Forkhead box protein M1 (FOXM1)-mediated epithelial-to-mesenchymal transition (EMT) in BC. Here, we aim to explore the role of miR-671-5p in the progression of BC oncogenic transformation and treatment. METHODS: The 21T series cell lines, which were originally derived from the same patient with metastatic BC, including normal epithelia (H16N2), ADH (21PT), primary DCIS (21NT), and cells derived from pleural effusion of lung metastasis (21MT), and human BC specimens were used. Microdissection, miRNA transfection, dual-luciferase, radio- and chemosensitivity, and host-cell reactivation (HCR) assays were performed. RESULTS: Expression of miR-671-5p displays a gradual dynamic decrease from ADH, to DCIS, and to IDC. Interestingly, the decreased expression of miR-671-5p detected in ADH coexisted with advanced lesions, such as DCIS and/or IDC (cADH), but not in simple ADH (sADH). Ectopic transfection of miR-671-5p significantly inhibited cell proliferation in 21NT (DCIS) and 21MT (IDC), but not in H16N2 (normal) and 21PT (ADH) cell lines. At the same time, the effect exhibited in time- and dose-dependent manner. Interestingly, miR-671-5p significantly suppressed invasion in 21PT, 21NT, and 21MT cell lines. Furthermore, miR-671-5p suppressed FOXM1-mediated EMT in all 21T cell lines. In addition, miR-671-5p sensitizes these cell lines to UV and chemotherapeutic exposure by reducing the DNA repair capability. CONCLUSIONS: miR-671-5p displays a dynamic decrease expression during the oncogenic transition of BC by suppressing FOXM1-mediated EMT and DNA repair. Therefore, miR-671-5p may serve as a novel biomarker for early BC detection as well as a therapeutic target for BC management.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Tolerancia a Radiación/genética , Regiones no Traducidas 3' , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Daño del ADN , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Proteína Forkhead Box M1/genética , Genes Reporteros , Humanos , Modelos Biológicos , Interferencia de ARNRESUMEN
Aspirin has been widely used for the prevention of cardiovascular diseases, but its antiplatelet efficiency varies between individuals. The present study aimed to evaluate response to aspirin based on gene profiles as well as potential regulating pathways using human blood samples and cell lines. Platelet function in patients 50 years or older with coronary artery disease on 100 mg/day aspirin was measured by light transmission aggregometry (LTA) of arachidonic acid (AA)-induced platelet aggregation. The expression of eight candidate genes-PTGS1/COX1, PLA2G4A, PLA2G6, PLA2G7, TBXAS1, TBXA2R, PTGIR, and ITGA2B-and the ingredients involved in AA metabolism were analyzed. Our data showed that the expressions of thromboxane A synthase 1 (TBXAS1), thromboxane synthase (TXS), and thromboxane B2 (TXB2) were increased in the upper quartile of platelet aggregation (LTA-AA_Q4) group compared with the lower quartile of platelet aggregation (LTA-AA_Q1) group. Our bioinformatics analysis suggested that TBXAS1 was targeted by miR-34b-3p via binding to its 3'-UTR, which was subsequently verified experimentally. Although overexpression of miR-34b-3p exhibited no apparent effect on cell proliferation, inhibition of miR-34b-3p promoted megakaryocyte viability. Our data demonstrated that the expression of TBXAS1 was higher in the aspirin hyporesponsiveness group than that in the hyperresponsiveness group, suggesting that high expression of TBXAS1 may be associated with aspirin hyporesponsiveness. miR-34b-3p may regulate the platelet and aspirin response by suppressing TBXAS1 expression and megakaryocyte proliferation.
Asunto(s)
Aspirina/uso terapéutico , Plaquetas/fisiología , Enfermedades Cardiovasculares/genética , Megacariocitos/fisiología , MicroARNs/genética , Inhibidores de Agregación Plaquetaria/uso terapéutico , Tromboxano-A Sintasa/genética , Anciano , Anciano de 80 o más Años , Biomarcadores Farmacológicos , Enfermedades Cardiovasculares/tratamiento farmacológico , Línea Celular , Proliferación Celular , Resistencia a Medicamentos , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Agregación Plaquetaria/genética , Tromboxano B2/genéticaRESUMEN
Lichen sclerosus (LS) is an inflammatory dermatosis with a predilection for anogenital skin. Developing lesions lead to vulvar pain and sexual dysfunction, with a significant loss of structural anatomical architecture, sclerosis, and increased risk of malignancy. Onset may occur at any age in both sexes, but typically affects more females than males, presenting in a bimodal fashion among pre-pubertal children and middle-aged adults. A definitive cure remains elusive as the exact pathogenesis of LS remains unknown. A general review of LS, histologic challenges, along with amounting support for LS as an autoimmune disease with preference for a Th1 immune response against a genetic background is summarized. In addition to the classically referenced ECM1 (extracellular matrix protein 1), a following discussion of other immune and genetic targets more recently implicated as causative or accelerant agents of disease, particularly miR-155, downstream targets of ECM1, galectin-7, p53, and epigenetic modifications to CDKN2A, are addressed from the viewpoint of their involvement in three different, but interconnected aspects of LS pathology. Collectively, these emerging targets serve not only as inherently potential therapeutic targets for treatment, but may also provide further insight into this debilitating and cryptic disease.
Asunto(s)
Liquen Escleroso y Atrófico/genética , Liquen Escleroso y Atrófico/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Colágeno Tipo V/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Progresión de la Enfermedad , Epigénesis Genética , Proteínas de la Matriz Extracelular/metabolismo , Galectinas/metabolismo , Humanos , Sistema Inmunológico , Incidencia , Liquen Escleroso y Atrófico/patología , MicroARNs/metabolismo , Estrés Oxidativo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Liver metastasis is a primary factor of prognosis and long-term survival for patients diagnosed with colorectal cancer (CRC). Colorectal cancer liver metastasis (CRCLM), is a complex biological process involving multiple factors and steps, and its mechanisms are yet to be discovered. In recent years, small noncoding RNAs, especially microRNAs (miRNAs) have been proven to play an important role in tumorigenesis, progression and metastasis in a variety of cancers, including CRC. Increasing evidence suggests that miRNAs, including those from exosomes secreted by tumor cells in circulation, could be used as promising biomarkers in early cancer detection, treatment, and prognosis. In this review, we focus on the functional roles and clinical applications of miRNAs, especially those from circulating exosomes secreted by tumor cells related to CRCLM.
RESUMEN
OBJECTIVES: Previous studies have illustrated the link between high on-aspirin platelet reactivity (HAPR) with increasing thrombotic risks. The aim of our study was to investigate relative risk factors of HAPR in elderly patients with coronary artery disease. METHODS: Elderly, hospitalized coronary artery disease patients on regular aspirin treatment were enrolled from January 2014 to September 2016. Medical records of each patient were collected, including demographic information, cardiovascular risk factors, concomitant drugs and routine biological parameters. Arachidonic acid (AA, 0.5 mg/mL) and adenosine diphosphate (ADP, 5 µmol/L) induced platelet aggregation were measured via light transmission assay (LTA) to evaluate antiplatelet responses, referred as LTA-AA and LTA-ADP. RESULTS: A total of 275 elderly patients were included, with mean age of 77.2±8.1 years, and males accounted for 81.8%. HAPR was defined as LTA-AA in the upper quartile of the enrolled population. HAPR patients tended to have lower renal function (P=0.052). Higher serum uric acid (SUA) level, as well as lower platelet count, hemoglobin and hematocrit were observed in HAPR patients, with a higher proportion of diuretics use (P<0.05). Multivariate analysis revealed that SUA (OR: 1.004, 95% CI: 1.000-1.007, P=0.048), platelet count (OR: 0.994, 95% CI: 0.989-1.000, P=0.045), hematocrit (OR: 0.921, 95% CI: 0.864-0.981, P=0.011) and concomitant P2Y12 receptor inhibitors use (OR: 1.965, 95% CI: 1.075-3.592, P=0.028) were correlated with HAPR. Spearman's correlation analysis demonstrated an inverse association of LTA-AA with hematocrit (r=-0.234, P<0.001), hemoglobin (r=-0.209, P<0.001) and estimated glomerular filtration rate (r=-0.132, P=0.031). CONCLUSION: SUA, platelet count, hematocrit and P2Y12 receptor inhibitors use were independently correlated with HAPR. These parameters might provide novel therapeutic targets for optimizing antiplatelet therapy.
Asunto(s)
Aspirina/efectos adversos , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/efectos adversos , Agregación Plaquetaria/efectos de los fármacos , Trombosis/inducido químicamente , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Factores de Riesgo , Ácido Úrico/sangreRESUMEN
Aspirin is widely used in the prevention of cardiovascular diseases, but the antiplatelet responses vary from one patient to another. To validate aspirin response related transcripts and illustrate their roles in predicting cardiovascular events, we have quantified the relative expression of 14 transcripts previously identified as related to high on-aspirin platelet reactivity (HAPR) in 223 patients with coronary artery disease (CAD) on regular aspirin treatment. All patients were followed up regularly for cardiovascular events (CVE). The mean age of our enrolled population was 75.80±8.57years. HAPR patients showed no significant differences in terms of co-morbidities and combined drugs. Besides, the relative expression of HLA-DQA1 was significantly lower in low on-aspirin platelet reactivity (LAPR) patients, when compared with HAPR and high normal (HN) group (p=0.028). What's more, the number of arteries involved, HAPR status and the relative expression of CLU, CMTM5 and SPARC were independent risk factors for CVE during follow up (p<0.05). In addition, overexpression of CMTM5 attenuated endothelial cells (ECs) migration and proliferation, with significantly decreased phosphorylated-Akt levels, while its inhibition promoted these processes in vitro (p<0.05).Our study provides evidence that circulating transcripts might be potential biomarkers in predicting cardiovascular events. CMTM5 might exert anti-atherosclerotic effects via suppressing migration and proliferation in the vessel wall. Nevertheless, larger-scale and long-term studies are still needed.
Asunto(s)
Aspirina/uso terapéutico , Quimiocinas/genética , Enfermedad de la Arteria Coronaria/genética , Proteínas con Dominio MARVEL/genética , Inhibidores de Agregación Plaquetaria/uso terapéutico , ARN Mensajero/sangre , Proteínas Supresoras de Tumor/genética , Anciano , Anciano de 80 o más Años , Aspirina/farmacología , Biomarcadores/sangre , Movimiento Celular , Proliferación Celular , Quimiocinas/metabolismo , Clusterina/genética , Clusterina/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Femenino , Cadenas alfa de HLA-DQ/genética , Cadenas alfa de HLA-DQ/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Proteínas con Dominio MARVEL/metabolismo , Masculino , Persona de Mediana Edad , Osteonectina/genética , Osteonectina/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Increased expression of progesterone receptor (PR) has been reported in gastric cancer (GC). We have previously identified a functional T889C point mutation in DNA polymerase beta (POLB), a DNA repair gene in GC. To provide a detailed analysis of molecular changes associated with the mutation, human cDNA microarrays focusing on 18 signal transduction pathways were used to analyze differential gene expression profiles between GC tissues with T889C mutant in POLB gene and those with wild type. Among the differentially expressed genes, notably, PR was one of the significantly up-regulated genes in T889C mutant POLB tissues, which were subsequently confirmed in POLB gene transfected AGS cell line. Interestingly, patients with T889C mutation and PR positivity were associated with higher incidence of intraperitoneal metastasis (IM). In vitro studies indicate that PR expression was upregulated in AGS cell line when transfected with T889C mutant expression vector. Cotransfection of T889C mutant allele and PR gene induced cell migration in the cell line. These data demonstrated that T889C mutation-associated PR overexpression results in increased IM. Therefore, T889C mutation-associated PR overexpression may serve as a biomarker for an adverse prognosis for human GC.
RESUMEN
Expression of Beta Protein 1 (BP1), a homeotic transcription factor, increases during breast cancer progression and may be associated with tumor aggressiveness. In our present work, we investigate the influence of BP1 on breast tumor formation and size in vitro and in vivo. Cells overexpressing BP1 showed higher viability when grown in the absence of serum (p < 0.05), greater invasive potential (p < 0.05) and formed larger colonies (p < 0.004) compared with the controls. To determine the influence of BP1 overexpression on tumor characteristics, MCF-7 cells transfected with either empty vector (V1) or overexpressor plasmids (O2 and O4) were injected into the fat pads of athymic nude mice. Tumors grew larger in mice receiving O2 or O4 cells than in mice receiving V1 cells. Moreover, BP1 mRNA expression levels were positively correlated with tumor size in patients (p = 0.01). Interestingly, 20% of mice injected with O2 or O4 cells developed tumors in the absence of estrogen, while no mice receiving V1 cells developed tumors. Several mechanisms of estrogen independent tumor formation related to BP1 were established. These data are consistent with the fact that expression of breast cancer anti-estrogen resistance 1 (BCAR1) was increased in O2 compared to V1 cells (p < 0.01). Importantly, O2 cells exhibited increased proliferation when treated with tamoxifen, while V1 cells showed growth inhibition. Overall, BP1 overexpresssion in MCF-7 breast cancer cells leads to increased cell growth, estrogen-independent tumor formation, and increased proliferation. These findings suggest that BP1 may be an important biomarker and therapeutic target in ER positive breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Células MCF-7 , Ratones Desnudos , Unión Proteica , Receptores de Estrógenos/genética , Factores de Transcripción/genética , Trasplante Heterólogo , Carga Tumoral/genéticaRESUMEN
This study explored the associations between common PSCA single-nucleotide polymorphisms (rs2294008, rs2978974, and rs2976392) and breast cancer among 560 breast cancer cases and 583 controls (Chinese Han women). We found rs2294008 was significantly associated with a high risk of breast cancer (homozygote model, odds ratio [OR]: 1.67, 95% confidence interval [CI]: 1.06-2.59; recessive, OR: 1.64, 95% CI: 1.06-2.53). And stratification by menopausal status revealed an association of the minor allele of rs2294008 with breast cancer risk among premenopausal (homozygote model, OR: 2.41, 95% CI: 1.03-5.66; recessive, OR: 2.80, 95 % CI: 1.21-6.47) and postmenopausal women (allele model, OR: 1.29, 95% CI: 1.01-1.65). Rs2978974 influenced the breast cancer risk among postmenopausal women in heterozygote model (OR: 1.47, 95% CI: 1.05-2.07). When stratified by clinicopathologic features, the T allele of rs2294008 was associated with progesterone receptor status (homozygote model, OR: 1.98, 95% CI: 1.08-3.63; recessive, OR: 1.87, 95% CI: 1.04-3.37), and the rs2976392 polymorphism was associated with high lymph node metastasis risk in homozygote model (OR: 2.09, 95%CI: 1.01-4.31). Further haplotype analysis suggested that Trs2294008 Ars2976392 Grs2978974 haplotype enhances breast cancer risk (OR:1.52, 95%CI:1.23-1.89, P<0.001). Therefore, among Chinese Han women, the PSCA rs2294008, rs2978974, and rs2976392 minor alleles are associated with increased breast cancer risk especially in progesterone receptor positive breast cancer patients, with breast cancer risk in postmenopausal women, and with high lymph node metastasis risk, respectively. Moreover, Trs2294008 Ars2976392 Grs2978974 haplotype was associated with significantly increased risk of breast cancer.
Asunto(s)
Antígenos de Neoplasias/genética , Neoplasias de la Mama/genética , Proteínas de Neoplasias/genética , Pueblo Asiatico/genética , Femenino , Proteínas Ligadas a GPI/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Deleted in colorectal carcinoma (DCC), a netrin-1 dependence receptor, is correlated with cell progression, migration, and adhesion. Evidence indicated that DCC was frequently down-regulated in many cancers. However, the association of DCC with breast cancer remains uncertain. We conducted a case-control study to investigate the impact of three DCC gene variants (rs2229080, rs7504990, and rs4078288) on breast cancer susceptibility in Chinese women. This study included 560 breast cancer patients and 583 age-matched healthy controls from Northwest China. The three gene variants were genotyped via Sequenom MassARRAY. Odds ratios (ORs) and 95% confidence intervals (CIs) were utilized to evaluate the associations. We found that individuals with the rs2229080 C/G, C/C, and C/G-CC genotypes had a higher breast cancer risk, and the minor allele C was associated with increased breast cancer risk in an allele model. We observed a significantly decreased breast cancer risk with the rs7504990 C/T, T/T, and C/T-T/T genotypes, and the minor allele T was protective against breast cancer in an allele model. In addition, rs2229080 was associated with the axillary lymph node (LN) metastasis status. An age-stratified analysis revealed an association between rs2229080 and reduced breast cancer risk among older patients (≥ 49 years). Furthermore, the haplotype analysis showed that the Crs2229080Crs7504990Ars4078288 haplotype was associated with a decreased breast cancer risk. However, the results indicated a lack of association between rs4078288 and breast cancer risk. These findings affirmed that rs2229080 and rs7504990 polymorphisms in DCC might be related with breast cancer susceptibility in Chinese women.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Receptor DCC/genética , Polimorfismo de Nucleótido Simple , Adulto , Factores de Edad , Pueblo Asiatico/genética , Neoplasias de la Mama/etnología , Neoplasias de la Mama/patología , Estudios de Casos y Controles , China/epidemiología , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Heterocigoto , Homocigoto , Humanos , Modelos Lineales , Persona de Mediana Edad , Oportunidad Relativa , Fenotipo , Factores Protectores , Medición de Riesgo , Factores de RiesgoRESUMEN
Breast cancer is the most common cancer among American women, except for skin cancers. About 12 % women in the United States will develop invasive breast cancer during their lifetime. Currently one of the most accepted model/theories is that ductal breast cancer (most common type of breast cancer) follows a linear progression: from normal breast epithelial cells to ductal hyperplasia to atypical ductal hyperplasia (ADH) to ductal carcinoma in situ (DCIS), and finally to invasive ductal carcinoma (IDC). Distinguishing pure ADH diagnosis from DCIS and/or IDC on mammography, and even combined with follow-up core needle biopsy (CNB) is still a challenge. Therefore subsequent surgical excision cannot be avoided to make a definitive diagnosis. MicroRNAs (miRNAs) are a highly abundant class of endogenous non-coding RNAs, which contribute to cancer initiation and progression, and are differentially expressed between normal and cancer tissues. They can function as either tumor suppressors or oncogenes. With accumulating evidence of the role of miRNAs in breast cancer progression, including our own studies, we sought to summarize the nature of early breast lesions and the potential use of miRNA molecules as biomarkers in early breast cancer detection. In particular, miRNA biomarkers may potentially serve as a companion tool following mammography screening and CNB. In the long-term, a better understanding of the molecular mechanisms underlying the miRNA signatures associated with breast cancer development could potentially result in the development of novel strategies for disease prevention and therapy.
RESUMEN
MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management.
Asunto(s)
Neoplasias de la Mama/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Antineoplásicos/farmacología , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Epirrubicina/farmacología , Fluorouracilo/farmacología , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Células MCF-7 , Microscopía Confocal , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Gastric cancer (GC) is the third leading cause of cancer-related deaths. More than 80% of the diagnosis was made at the advanced stages of the disease, highlighting the urgent demand for novel biomarkers that can be used for early detection. Recently, a number of studies suggest that circulating microRNAs (miRNAs) could be potential biomarkers for GC diagnosis. Cancer-related circulating miRNAs, as well as tissue miRNAs, provide a hopeful prospect of detecting GC at early stages, and the prospective participation of miRNAs in biomarker development will enhance the sensitivity and specificity of diagnostic tests for GC. As miRNAs in blood are stable, their potential value as diagnostic biomarkers in GC has been explored over the past few years. However, due to the inconsistent or sometimes conflicting reports, large-scale prospective studies are needed to validate their potential applicability in GC diagnosis. This review summarizes the current development about potential miRNA biomarkers for GC diagnosis and the obstacles hindering their clinical usage.