Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(3): 761-774, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215394

RESUMEN

Metal complexes exhibit a diverse range of coordination geometries, representing novel privileged scaffolds with convenient click types of preparation inaccessible for typical carbon-centered organic compounds. Herein, we explored the opportunity to identify biologically active organometallic complexes by reverse docking of a rigid, minimum-size octahedral organoruthenium scaffold against thousands of protein-binding pockets. Interestingly, cannabinoid receptor type 1 (CB1) was identified based on the docking scores and the degree of overlap between the docked organoruthenium scaffold and the hydrophobic scaffold of the cocrystallized ligand. Further structure-based optimization led to the discovery of organoruthenium complexes with nanomolar binding affinities and high selectivity toward CB2. Our work indicates that octahedral organoruthenium scaffolds may be advantageous for targeting the large and hydrophobic binding pockets and that the reverse docking approach may facilitate the discovery of novel privileged scaffolds, such as organometallic complexes, for exploring chemical space in lead discovery.


Asunto(s)
Diseño de Fármacos , Receptor Cannabinoide CB2 , Receptores de Cannabinoides/química , Receptores de Cannabinoides/metabolismo , Unión Proteica , Ligandos , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA