Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(24): e38533, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875394

RESUMEN

Physical examination data are used to indicate individual health status and organ health, and understanding which physical examination data are indicative of physiological aging is critical for health management and early intervention. There is a lack of research on physical examination data and telomere length. Therefore, the present study analyzed the association between blood telomere length and physical examination indices in healthy people of different ages to investigate the role and association of various organs/systems with physiological aging in the human body. The present study was a cross-sectional study. Sixteen physical examination indicators of different tissue and organ health status were selected and analyzed for trends in relation to actual age and telomere length (TL). The study included 632 individuals with a total of 11,766 data for 16 physical examination indicators. Age was linearly correlated with 11 indicators. Interestingly, telomere length was strongly correlated only with the renal indicators eGFR (P < .001), CYS-C (P < .001), and SCR (P < .001). The study established that renal aging or injury is a risk factor for Physical aging of the human body. Early identification and management are essential to healthcare.


Asunto(s)
Envejecimiento , Biomarcadores , Telómero , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Envejecimiento/genética , Envejecimiento/fisiología , Adulto , Anciano , Biomarcadores/sangre , Adulto Joven , Examen Físico/métodos , Anciano de 80 o más Años , Estado de Salud , Indicadores de Salud
2.
Front Microbiol ; 15: 1323160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500581

RESUMEN

The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate-free or potassium nitrate-rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate-free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism-associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.

3.
Front Pharmacol ; 14: 1349081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269271

RESUMEN

Relatlimab is a type of human immunoglobulin G4 monoclonal blocking antibody. It is the world's first Lymphocyte-Activation Gene-3 (LAG-3) inhibitor and the third immune checkpoint inhibitor with clinical application, following PD-1 and CTLA-4. Relatlimab can bind to the LAG-3 receptor which blocks the interaction between LAG-3 and its ligand to reduce LAG-3 pathway-mediated immunosuppression and promote T-cell proliferation, inducing tumor cell death. On 18 March 2022, the U.S. FDA approved the fixed-dose combination of relatlimab developed by Bristol Myers Squibb with nivolumab, under the brand name Opdualag for the treatment of unresectable or metastatic melanoma in adult and pediatric patients aged 12 and older. This study comprehensively describes the mechanism of action and clinical trials of relatlimab and a brief overview of immune checkpoint drugs currently used for the treatment of melanoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA