Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Pestic Biochem Physiol ; 199: 105773, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458680

RESUMEN

Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.


Asunto(s)
Hemípteros , Animales , Femenino , Hemípteros/genética , Oviposición , Plantas Modificadas Genéticamente , Interferencia de ARN
2.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442096

RESUMEN

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Asunto(s)
Cuerpos Basales , Cognición , Animales , Señales (Psicología) , Axonema , Cilios/genética , Drosophila/genética
3.
Appl Environ Microbiol ; 90(3): e0190023, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38334408

RESUMEN

Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts. IMPORTANCE: In the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.


Asunto(s)
Betaproteobacteria , Euplotes , Filogenia , Simbiosis/genética , Euplotes/genética , Euplotes/microbiología , Betaproteobacteria/genética , Bacterias/genética , Genoma Bacteriano , Genómica
4.
J Integr Neurosci ; 23(1): 2, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38287845

RESUMEN

OBJECTIVE: Levodopa (L-DOPA) is the primary treatment for Parkinson's disease (PD). Nevertheless, the underlying mechanism of its action is not entirely learned. This study aims to probe the action of L-DOPA on NLR pyrin domain containing 3 (NLRP3) inflammasome activation and tyrosine hydroxylase (TH) levels in the striatum (STR) and substantia nigra (SN) of mice with PD symptoms. METHODS: PD was simulated by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 25 mg/kg/d) to induce mice, followed by L-DOPA (8 mg/kg/d) treatment. The behavioral performance of the mice was assessed using the pole test, balance beam, and rotarod test. After euthanasia with 120 mg/kg sodium pentobarbital, STR and SN were collected for evaluation of protein level of TH, NLR pyrin domain containing 3 (NLRP3), ASC and Cleaved caspase-1 using Western blot and mRNA levels of TH, inflammatory factors IL-1ß and IL-18 using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Treatment with L-DOPA significantly ameliorated the behavioral deficits caused by MPTP in mice with PD symptoms. L-DOPA administration resulted in reduced levels of apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain) (ASC), NLRP3, and Cleaved caspase-1 protein levels, and decreased mRNA levels of IL-1ß and IL-18 in the STR and SN. L-DOPA increased the TH mRNA and TH protein levels, while suppressing NLRP3 inflammasome activation in the STR and SN of mice with PD symptoms. CONCLUSIONS: L-DOPA improves the behavioral deficits in mice with PD symptoms possibly by suppressing NLRP3 inflammasome activation and increasing TH levels in the STR and SN TH levels. These findings provide further perceptions into the property of L-DOPA in PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Levodopa/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Sustancia Negra/metabolismo , ARN Mensajero/metabolismo , Caspasas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
5.
Int J Biol Macromol ; 254(Pt 1): 127743, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287569

RESUMEN

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The single-celled eukaryote Euplotes exhibit high frequency of PRF. However, the molecular mechanism of modulating Euplotes PRF remains largely unknown. Here, we identified two novel eIF5A genes, eIF5A1 and eIF5A2, in Euplotes octocarinatus and found that the Eo-eIF5A2 gene requires a -1 PRF to produce complete protein product. Although both Eo-eIF5As showed significant structural similarity with yeast eIF5A, neither of them could functionally replace yeast eIF5A. Eo-eIF5A knockdown inhibited +1 PRF of the η-tubulin gene. Using an in vitro reconstituted translation system, we found that hypusinated Eo-eIF5A (Eo-eIF5AH) can promote +1 PRF at the canonical AAA_UAA frameshifting site of Euplotes. The results showed eIF5A is a novel trans-regulator of PRF in Euplotes and has an evolutionary conserved role in regulating +1 PRF in eukaryotes.


Asunto(s)
Euplotes , Sistema de Lectura Ribosómico , Sistema de Lectura Ribosómico/genética , Euplotes/genética , Euplotes/metabolismo , Saccharomyces cerevisiae/genética
6.
RSC Adv ; 13(39): 27403-27414, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37711368

RESUMEN

Herein for the first time we take the advantage of nanodiamonds (NDs) to covalently immobilize all-trans retinal (NPA) by an imine bond, allowing pH-mediated drug release. DOX is then physically adsorbed onto NPA to form an NPA@D co-loaded double drug in the sodium citrate medium, which is also susceptible to pH-triggered DOX dissociation. The cytotoxicity results showed that NPA@D could markedly inhibit the growth of DOX-sensitive MCF-7 cells in a synergetic way compared to the NP@D system of single-loaded DOX, while NPA basically showed no cytotoxicity and weak inhibition of migration. In addition, NPA@D can overcome the drug resistance of MCF-7/ADR cells, indicating that this nanodrug could evade the pumping of DOX by drug-resistant cells, but free DOX is nearly ineffective against these cells. More importantly, the fluorescence imaging of tumor-bearing mice in vivo and ex vivo demonstrated that the NPA@D was mainly accumulated in the tumor site rather than any other organ by intraperitoneal injection after 24 h, in which the fluorescence intensity of NPA@D was 19 times that of the free DOX, suggesting that a far reduced off-target effect and side effects would be expected. Therefore, this work presents a new paradigm for improving chemotherapy and reversing drug resistance using the ND platform for co-delivery of DOX and ATR.

7.
Biochem Biophys Res Commun ; 670: 19-26, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37271036

RESUMEN

As a Lepidoptera pest, Spodoptera frugiperda has become one of the major migratory pests causing significant damage to crops. It should prevent and control Spodoptera frugiperda with strong reproductive ability, adaptability, and migration ability, and reduce economic losses as much as possible. Chemical insecticides are mainly used in the emergency control of Spodoptera frugiperda. Diamide insecticide is a kind of pesticide that specifically targets the ryanodine receptor of Lepidopteran pests, which makes it safe, effective, targeted, and low toxicity to mammals. So, it is one of the most concerned and fastest-growing pesticide products after neonicotinoid pesticides. Intracellular Ca2+ concentration can be regulated by ryanodine receptors, and the continuous release of Ca2+ eventually leads to the death of pests and achieve the insecticidal effect. This review introduces in detail diamide insecticides that mainly play roles in stomach toxicity, as well as its specific target-ryanodine receptor, and analyzes how the diamide insecticide acts on the ryanodine receptor and how its mechanism of action can provide a theoretical basis for the rational use of highly effective insecticides and solve the resistance problem. Moreover, we also propose several recommendations for reducing resistance to diamide insecticides, and provide a reference for chemical control and resistance studies of Spodoptera frugiperda, which has broad development prospects in today's increasingly concerned about the ecological environment and advocating green environmental protection.


Asunto(s)
Insecticidas , Animales , Insecticidas/toxicidad , Canal Liberador de Calcio Receptor de Rianodina , Diamida/farmacología , Resistencia a los Insecticidas , Spodoptera , Mamíferos
8.
J Agric Food Chem ; 71(18): 7009-7019, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126455

RESUMEN

Like many insects, females of the Noctuid moth Spodoptera litura and Spodoptera exigua release chemical signals to attract males from a long distance for successful mating. In this study, 98 and 86 genes related to the sex pheromone biosynthesis of S. litura and S. exigua were identified. The tissue expression profiles of highly expressed genes in sex pheromone glands (PGs) were further examined by real-time quantitative polymerase chain reaction. The results displayed that only SlitDes5 and SexiDes5 gene were specifically and significantly overexpressed in the PGs of S. litura and S. exigua. The functional study of SlitDes5 gene showed that RNA interference reduced its expression level by 49.42%. In addition, the content of the sex pheromones of S. litura, Z9E11-14:OAc, Z9E12-14:OAc, E11-14:OAc, and Z9-14:OAc, decreased by 41.98% on average. Our findings provide a basis for better understanding the key genes that affect the biosynthesis of sex pheromones and for determining potential gene targets for pest control strategies.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Femenino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atractivos Sexuales/química , Perfilación de la Expresión Génica , Mariposas Nocturnas/genética , Interferencia de ARN
9.
Insect Sci ; 30(3): 611-624, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36302113

RESUMEN

Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Femenino , Animales , Atractivos Sexuales/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/genética
10.
Virus Genes ; 59(2): 188-194, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36229721

RESUMEN

me53, a highly conserved immediate early gene in all Lepidoptera baculoviruses, has been of great interest in recent years. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. The me53 gene of AcMNPV has been sequenced, and it was transcribed late after infection. The structure of ME53 protein and its roles in the infection of host cells were summarized and discussed, including that (1) the production of Budding Virus (BV); (2) nucleocapsid formation in the host nuclei; (3) ME53 forms a lesion on the cell membrane of AcMNPV-infected cells and co-locates with GP64 and the primary capsid protein VP39; (4) the nuclear translocation signal sequence of ME53 is essential for optimal baculovirus production. In this review, we focus on the emerging roles of ME53 by discussing novel mechanisms identified to mediate or interact by ME53, which provides an important reference for the effective transformation, utilization and improvement of the anti-insect activity of AcMNPV.


Asunto(s)
Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Spodoptera/metabolismo , Línea Celular , Proteínas de la Cápside/metabolismo
11.
Int J Biol Macromol ; 222(Pt B): 2190-2199, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209905

RESUMEN

Spodoptera frugiperda is one of the significant migratory pests. Baculovirus, an insect-specific microbial insecticide, has been used to control pests. microRNA-34 (miR-34) regulates insect development and innate immunity to pathogens. This study explored the critical functions of miR-34-5p, encoded by S. frugiperda, in the anti-AcMNPV by targeting the JAK/STAT immune pathway. Integrating immune signal pathways analysis, developmental expression patterns, larval development, and genomic replication assay, we focused on the stat, a miR-34-5p target gene, and comprehensively revealed a novel mechanism of physiological and anti-virus function in S. frugiperda. miR-34-5p inhibited AcMNPV proliferation by targeting stat and provided an unfavorable environment for the virus by affecting the host genome replication and promoting the cell to undergo apoptosis. Moreover, stat silence suppressed viral and host genome replication, impaired viral proliferation by suppressing the transcript level of viral early gene ie1, ie2, and promoted apoptosis by affecting p35 expression. This study highlighted that the miR-34-5p target gene stat played physiological functions in the insect antiviral immune and development, which provided a basis for creating target nucleic acid pesticides against S. frugiperda and prepared AcMNPV virus strains inactivated by miR-34-5p to escape host immunity.


Asunto(s)
MicroARNs , Nucleopoliedrovirus , Animales , Spodoptera/genética , Baculoviridae/genética , Nucleopoliedrovirus/genética , MicroARNs/genética , MicroARNs/metabolismo , Inmunidad Innata/genética , Replicación Viral/genética
12.
Pest Manag Sci ; 78(12): 5379-5389, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057111

RESUMEN

BACKGROUND: Spodoptera frugiperda is one of the significant migratory pests in the Global Alert issued by the Food and Agriculture Organization of the United Nations. As an insect-specific microbial insecticide, baculovirus has been used to control various pests. MicroRNA-34-5p (miR-34-5p) is involved in regulating growth, reproduction and innate immunity to pathogens in insects, playing an essential role in host-virus interactions. In this study, we explored the critical function of miR-34-5p encoded by S. frugiperda in the anti-Autographa californica multiple nucleopolyhedrovirus (AcMNPV), providing a reference for the design of a miR-34-5p target biopesticide against S. frugiperda and a theoretical basis for the wide application of microRNAs (miRNAs) in green pest control technology. RESULTS: We focused on miR-34-5p identified as downregulated in Sf9 cells and S. frugiperda larvae infected by AcMNPV. The regulatory function of miR-34-5p in AcMNPV-S. frugiperda interactions was studied by transfecting synthetic mimics and inhibitors, and constructing recombinant bacmids with miR-34-5p overexpression. miR-34-5p inhibited the production of infectious budded virions at the cellular and insect levels, inhibited the replication of the viral DNA and glucose metabolism, and increased the transcription of the antimicrobial peptide gloverin. Furthermore, the virus genes odv-e66, ac78 and ie2 were shown to be direct targets. CONCLUSION: We systematically revealed the mechanism by which miR-34-5p is involved in the insect antiviral process. miR-34-5p inhibited the replication and infection of AcMNPV by directly targeting AcMNPV genes, especially ac78 and ie2. Our study provides a new direction and thinking for the prevention and green control of lepidopteran pests. © 2022 Society of Chemical Industry.


Asunto(s)
MicroARNs , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/fisiología , Spodoptera/genética , MicroARNs/genética , Células Sf9
13.
Biotechnol Lett ; 44(9): 1081-1096, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35922646

RESUMEN

OBJECTIVES: AcMNPV is a kind of microbial insecticide that can significantly relieve the resistance of Spodoptera frugiperda to chemical pesticides. TPP is a widely used synergist, which can reduce the use of pesticides by inhibiting carboxylesterase. It is emergently needed to develop a biological control way of Spodoptera frugiperda. RESULTS: GP64 mediates low-pH-triggered membrane fusion during entry by endocytosis and participates in AcMNPV particle budding. We explored the synergistic anti-insect activity of AcMNPV-gp64-EGFP and TPP. AcMNPV-gp64-EGFP could increase progeny virus proliferation and accelerate the transcription of 38k and vp39 genes. TPP could inhibit the carboxylesterase activity in the midgut of Spodoptera frugiperda larvae infected with AcMNPV-gp64-EGFP and enhance the virulence of AcMNPV-gp64-EGFP to Spodoptera frugiperda. CONCLUSIONS: TPP targeted carboxylesterase inhibition so that AcMNPV-gp64-EGFP could escape the antiviral response in insect hosts. It provided a novel strategy for the prevention of Spodoptera frugiperda.


Asunto(s)
Plaguicidas , Animales , Hidrolasas de Éster Carboxílico , Proteínas Fluorescentes Verdes/metabolismo , Nucleopoliedrovirus , Organofosfatos , Spodoptera , Proteínas del Envoltorio Viral/metabolismo
14.
Int J Biochem Cell Biol ; 144: 106168, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085803

RESUMEN

microRNA-34, a highly conserved microRNA in evolution, is of great interest in recent years. miR-34 regulates multiple targets and performed many functions in cells, such as (1) those mediated by targeting ALDH2, Atf1, Bcl-2 have been implicated in cancer cell apoptosis; (2) it targets CCNE2, CDK4, CDK6 and others to regulate the cell cycle; and (3) it regulates immune homeostasis in Drosophila through Dlg1, Eip75B and others. Meanwhile, miR-34 family is a multifunctional miRNA family identified to be pivotal in organ development, organismal or organ senescence, stress response, spermatogenesis and signal transduction. In this review, we focus on the emerging roles of miR-34 family in mammals, arthropods and Nematoda by discussing novel functions of old and new targets, mechanisms identified to mediate or interact by miR-34, which provides references for screening of tumor target drugs and creation of green target biopesticide.


Asunto(s)
MicroARNs , Animales , Apoptosis/genética , Ciclo Celular/genética , Proliferación Celular/genética , Masculino , Mamíferos/genética , Mamíferos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/genética
15.
J Appl Microbiol ; 132(3): 1926-1935, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34787948

RESUMEN

AIMS: Ruminiclostridium cellulolyticum, an anaerobic cellulolytic bacterium producing an efficient cellulolytic extracellular complex named cellulosome, is a promising host for biofuel production from lignocellulose. This study aims to develop a rapid transformation method for R. cellulolyticum avoiding its restriction system. METHODS AND RESULTS: The CceI restriction system is a major barrier to introduction of foreign DNA into R. cellulolyticum cells. To improve the transformation efficiency of R. cellulolyticum, the gene encoding CceI methyltransferase (M.CceI) of R. cellulolyticum H10 was functionally expressed in Escherichia coli, resulting in an in vivo methylation system for transformation of R. cellulolyticum. The electrotransformation experiments of R. cellulolyticum H10 with the E. coli-Clostridium shuttle plasmid pMTC6 showed that the transformation efficiency reached up to 2.6 × 103 ±0.23 × 103  CFU per µg plasmid DNA. The results demonstrated that the system is able to confer the M.CceI-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the CceI restriction and efficiently transferred into R. cellulolyticum. CONCLUSIONS: In this study, we generated an in vivo methylation system of R. cellulolyticum, allowing interspecies DNA transfer and improving transformation efficiency. SIGNIFICANCE AND IMPACT OF THE STUDY: This research result will greatly facilitate the metabolic engineering of R. cellulolyticum for biofuel production directly from cellulose.


Asunto(s)
Clostridium cellulolyticum , Escherichia coli , Clostridium cellulolyticum/genética , Clostridium cellulolyticum/metabolismo , Metilación de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Plásmidos/genética
16.
Pest Manag Sci ; 77(10): 4758-4769, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34148283

RESUMEN

BACKGROUND: AcMNPV is a model organism of baculovirus, and Spodoptera frugiperda is one of its hosts. Disclosing the role of ac106/107 in AcMNPV infecting Spodoptera frugiperda 9 (Sf9) cells is of great significance for modifying AcMNPV as a microbial insecticide. This work constructed recombinant baculovirus that knocking out, repairment and overexpression of ac106/107 and explored the effects of Ac106/107 on the proliferation of progeny viruses. Moreover, the potential mechanism and targets of ac106/107 were further revealed. RESULTS: First, compared with the Bacmid-EGFP transfection group, the progeny virus does not proliferate after knocking out of ac106/107, and the proliferation ability increases by 14.5% at 72 h post transfection (h p.t.) when overexpression of ac106/107. However, knockout, repairment and overexpression of ac106/107 have no effect on viral DNA replication. Secondly, Ac106/107-EGFP was located in the cytoplasm and nucleus. Transcription level of late viral genes and viral RNA polymerase subunit genes in the Bacmidac106/107KO -EGFP transfection group and Bacmid-Ac106/107-EGFP transfection group was reduced and increased, respectively. Thirdly, AcMNPV would increase the glucose utilization and lactate consumption of the host Sf9 cells, and Bacmidac106/107KO -EGFP transfection group had lower glucose consumption and lactic acid accumulation than Bacmid-EGFP, Bacmidac106/107KO -Ac106/107(rep)-EGFP and Bacmid-Ac106/107-EGFP transfection groups. CONCLUSION: Ac106/107 can enter the nucleus and affect transcription of viral RNA polymerase subunit genes, which in turn affects the transcription of late genes, and ultimately affects virus proliferation and energy metabolism in host cells. © 2021 Society of Chemical Industry.


Asunto(s)
Nucleopoliedrovirus , Animales , Replicación del ADN , ADN Viral , Metabolismo Energético , Genes Virales , Nucleopoliedrovirus/genética , Spodoptera/genética , Spodoptera/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
17.
Transl Oncol ; 13(12): 100863, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32898767

RESUMEN

About 70% of ovarian cancer (OvCa) cases are diagnosed at advanced stages (stage III/IV) with only 20-40% of them survive over 5 years after diagnosis. A reliably screening marker could enable a paradigm shift in OvCa early diagnosis and risk stratification. Age is one of the most significant risk factors for OvCa. Older women have much higher rates of OvCa diagnosis and poorer clinical outcomes. In this article, we studied the correlation between aging and genetic alterations in The Cancer Genome Atlas Ovarian Cancer dataset. We demonstrated that copy number variations (CNVs) and expression levels of the F-Box and Leucine-Rich Repeat Protein 20 (FBXL20), a substrate recognizing protein in the SKP1-Cullin1-F-box-protein E3 ligase, can predict OvCa overall survival, disease-free survival and progression-free survival. More importantly, FBXL20 copy number loss predicts the diagnosis of OvCa at a younger age, with over 60% of patients in that subgroup have OvCa diagnosed at age less than 60 years. Clinicopathological studies further demonstrated malignant histological and radiographical features associated with elevated FBXL20 expression levels. This study has thus identified a potential biomarker for OvCa prognosis.

18.
Mol Cell Biochem ; 463(1-2): 79-90, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31602540

RESUMEN

AcMNPV is the first baculovirus to be sequenced and is considered a model of baculovirus. ac154 is a later expression gene in AcMNPV genome and its function is unknown. In this study, we explored the function of Ac154 in AcMNPV infection process in host Sf9 cells. The results showed that Ac154 was distributed in both nucleus and cytoplasm. Knockout of ac154 did not affect the production of BV, but the yield of progeny virus was reduced, indicating the auxiliary function of Ac154 in virus production. MTT assay showed that Ac154 promoted the proliferation and inhibited apoptosis of Sf9 cells. Overexpression of ac154 gene significantly increased the transcription level of anti-apoptotic gene p35, and delayed the expression of the pro-apoptotic protein SfP53 and reduced its expression level, which indicated its anti-apoptotic role in the host cells. In conclusion, our results demonstrated Ac154 could delay apoptosis process in host cells by regulating the transcription of p35 gene and the expression of SfP53 protein, which provided a more favorable environment for progeny virus replication and packaging, thereby promoting the proliferation of progeny virus. So we provided a potentially improved bac-to-bac eukaryotic protein expression system and biopesticide in this work.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Regulación de la Expresión Génica , Proteínas de Insectos/biosíntesis , Nucleopoliedrovirus/metabolismo , Spodoptera , Transcripción Genética , Proteínas Virales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Insectos/genética , Nucleopoliedrovirus/genética , Células Sf9 , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/virología , Proteínas Virales/genética
19.
Biotechnol Lett ; 41(10): 1121-1131, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31444662

RESUMEN

OBJECTIVES: To analyze the effect of Ac25 on the proliferation of AcMNPV (Autographa californica multicapsid nucleopolyhedrovirus) progeny virus and its function in virogenic stroma. RESULTS: AcMNPV is a model of baculovirus and is the most widely studied baculovirus. Ac25, as a single-stranded DNA-binding protein, is involved in viral genomic DNA replication. Viral proliferation assay showed that AcMNPV progeny virus could not be produced when Ac25 was knocked out, which indicated it was crucial for BV production. Absolute quantitative PCR analysis indicated that Ac25 was able to promote replication of the AcMNPV genome in host Sf9 cells. It was also found that Ac25 could increase the transcription level of 38k and vp39 late expression genes, and inhibit host cell proliferation. CONCLUSION: Ac25 is highly accumulated in the nucleus and promotes progeny virus production by stimulating viral genome replication and up-regulating the expression of late genes. Two potential applications of vAc-Ac25-EGFP were proposed: an improved bac-to-bac eukaryotic protein expression systems and biopesticides.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genes Virales , Nucleopoliedrovirus/crecimiento & desarrollo , Nucleopoliedrovirus/genética , Proteínas Virales/metabolismo , Liberación del Virus , Replicación Viral , Animales , Proteínas de Unión al ADN/genética , Células Sf9 , Spodoptera , Proteínas Virales/genética
20.
Biotechnol Lett ; 41(1): 147-158, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30421092

RESUMEN

OBJECTIVES: To analyze the function of Ac34 in Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) and elucidate the JNK apoptotic signaling pathway activation in host Spodoptera frugiperda 9 (Sf9) cells induced by the recombinant virus AcMNPV-Ac34-EGFP. RESULTS: AcMNPV is an important species of baculoviruses. First, viral propagation assay indicated that overexpression of Ac34 protein promoted replication of AcMNPV. Quantitative RT-PCR analysis showed that Ac34 increased the transcriptional level of late genes 38k and vp39, which suggested that Ac34 promoted the production of progeny virus by upregulating transcription of late genes. Second, AcMNPV-Ac34-EGFP inhibited the proliferation of Sf9 cells. Moreover, Sf9 cells infected with AcMNPV-Ac34-EGFP resulted in abundant expression of SfP53 and its accumulation in the nucleus. c-Jun N-terminal kinase (JNK) activation requires MKK4 and MKK7 mediated phosphorylation at Thr183 and Tyr185. We found increased levels of p-JNK1/2 in Sf9 cells infected by AcMNPV-Ac34-EGFP, with concomitant induction of Sf9 cell death. Furthermore, treatment of infected Sf9 cells with SP600125 (an inhibitor of JNK pathway) downregulated p-JNK1/2 and influenced the expression of virus-induced apoptosis protein SfP53, as well as Cytochrome C and Bax. CONCLUSION: AcMNPV-Ac34-EGFP virus upregulated the progeny virus production and triggered apoptosis via activation of the JNK pathway in Sf9 cells. In this work, we unveiled an effective virus replication factor-Ac34 and more importantly, developed a recombinant virus that can be used as an improved version of biopesticide.


Asunto(s)
Apoptosis , Regulación Viral de la Expresión Génica/fisiología , Nucleopoliedrovirus/fisiología , Proteínas Virales/biosíntesis , Replicación Viral/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Células Sf9 , Spodoptera , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA