Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Med Chem ; 67(15): 13187-13196, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39069741

RESUMEN

Fragment-based drug design is heavily dependent on the optimization of initial low-affinity binders. Herein we introduce an approach that uses selective labeling of methyl groups in leucine and isoleucine side chains to directly probe methyl-π contacts, one of the most prominent forms of interaction between proteins and small molecules. Using simple NMR chemical shift perturbation experiments with selected BRD4-BD1 binders, we find good agreement with a commonly used model of the ring-current effect as well as the overall interaction geometries extracted from the Protein Data Bank. By combining both interaction geometries and chemical shift calculations as fit quality criteria, we can position dummy aromatic rings into an AlphaFold model of the protein of interest. The proposed method can therefore provide medicinal chemists with important information about binding geometries of small molecules in fast and iterative matter, even in the absence of high-resolution experimental structures.


Asunto(s)
Modelos Moleculares , Ligandos , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Unión Proteica , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas/química , Proteínas/metabolismo , Diseño de Fármacos , Espectroscopía de Resonancia Magnética , Proteínas que Contienen Bromodominio
2.
Arch Pharm (Weinheim) ; 357(6): e2300649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396281

RESUMEN

Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.


Asunto(s)
Factores de Transcripción NFATC , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/química , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
3.
Chemphyschem ; 25(1): e202300636, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37955910

RESUMEN

The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas , Simulación del Acoplamiento Molecular , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química
4.
ChemMedChem ; 18(6): e202200686, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36649575

RESUMEN

The bromodomain and PHD-finger containing transcription factor (BPTF) is part of the nucleosome remodeling factor (NURF) complex and has been implicated in multiple cancer types. Here, we report the discovery of a potent and selective chemical probe targeting the bromodomain of BPTF with an attractive pharmacokinetic profile enabling cellular and in vivo experiments in mice. Microarray-based transcriptomics in presence of the probe in two lung cancer cell lines revealed only minor effects on the transcriptome. Profiling against a panel of cancer cell lines revealed that the antiproliferative effect does not correlate with BPTF dependency score in depletion screens. Both observations and the multi-domain architecture of BPTF suggest that depleting the protein by proteolysis targeting chimeras (PROTACs) could be a promising strategy to target cancer cell proliferation. We envision that the presented chemical probe and the related negative control will enable the research community to further explore scientific hypotheses with respect to BPTF bromodomain inhibition.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Animales , Ratones , Proliferación Celular , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
5.
Nat Commun ; 13(1): 5969, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216795

RESUMEN

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.


Asunto(s)
Adenosina Trifosfatasas , Factores de Transcripción , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteolisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
6.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35883003

RESUMEN

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/genética , Exones/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/genética
7.
Int J Colorectal Dis ; 37(5): 1107-1117, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35426079

RESUMEN

BACKGROUND: The impact of body mass index (BMI) on prognosis in patients with curatively resected stage I-III colon carcinoma was analyzed. METHODS: The prospectively collected data of 694 patients who underwent complete mesocolic excision between 2003 and 2014 were analyzed. BMI was classified into four categories: underweight (BMI < 18.5 kg/m2; n = 13), normal weight (BMI 18.5 to 24.9 kg/m2; n = 221), overweight (BMI 25.0 to 29.9 kg/m2; n = 309), and obese (BMI ≥ 30.0 kg/m2; n = 151). Univariate and multivariate analyses for comparison of prognosis were performed. RESULTS: The 5-year rate of locoregional recurrence in all 694 patients was 2.1%, and no differences were found with respect to BMI (p = 0.759). For distant metastasis, the 5-year rate for all patients was 13.4%, and BMI did not have a significant impact (p = 0.593). The 5-year rate of disease-free survival for all 694 patients was 72.4%. The differences with respect to BMI were not found to be significant in univariate analysis (p = 0.222). In multivariate Cox regression analysis, disease-free survival was significantly better in obese patients (HR 0.7; p = 0.034). Regarding overall survival, the 5-year rate for all patients was 78.1%. In univariate analyses, no significant differences were found for BMI (p = 0.094). In the Cox regression analysis, overweight and obese patients had significantly better survival (overweight: HR 0.7; p = 0.027; obese: HR 0.6; p = 0.019). CONCLUSION: The better survival of overweight and obese patients in multivariate analyses must be interpreted with caution. It is influenced by several factors and seems to correspond to the phenomenon of the obesity paradox.


Asunto(s)
Carcinoma , Neoplasias del Colon , Índice de Masa Corporal , Neoplasias del Colon/complicaciones , Neoplasias del Colon/cirugía , Humanos , Recurrencia Local de Neoplasia , Obesidad/complicaciones , Sobrepeso/complicaciones , Pronóstico , Estudios Retrospectivos
8.
ChemMedChem ; 16(23): 3576-3587, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34524728

RESUMEN

The NRF2 transcription factor is a key regulator in cellular oxidative stress response, and acts as a tumor suppressor. Aberrant activation of NRF2 has been implicated in promoting chemo-resistance, tumor growth, and metastasis by activating its downstream target genes. Hence, inhibition of NRF2 promises to be an attractive therapeutic strategy to suppress cell proliferation and enhance cell apoptosis in cancer. Direct targeting of NRF2 with small-molecules to discover protein-DNA interaction inhibitors is challenging as it is a largely intrinsically disordered protein. To discover molecules that bind to NRF2 at the DNA binding interface, we performed an NMR-based fragment screen against its DNA-binding domain. We discovered several weakly binding fragment hits that bind to a region overlapping with the DNA binding site. Using SAR by catalogue we developed an initial structure-activity relationship for the most interesting initial hit series. By combining NMR chemical shift perturbations and data-driven docking, binding poses which agreed with NMR information and the observed SAR were elucidated. The herein discovered NRF2 hits and proposed binding modes form the basis for future structure-based optimization campaigns on this important but to date 'undrugged' cancer driver.


Asunto(s)
ADN/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , ADN/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Relación Estructura-Actividad
9.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33275320

RESUMEN

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/química , beta Catenina/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , beta Catenina/metabolismo
10.
Angew Chem Int Ed Engl ; 59(35): 14861-14868, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32421895

RESUMEN

While CH-π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH-π interactions in drug-protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein-ligand CH-π interactions in solution. By combining selective amino-acid side-chain labeling with 1 H-13 C NMR, we are able to identify specific protein protons of side-chains engaged in CH-π interactions with aromatic ring systems of a ligand, based solely on 1 H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH-π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Humanos , Modelos Moleculares
11.
Antioxidants (Basel) ; 9(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098277

RESUMEN

The flavonoid kaempferol is almost ubiquitously contained in edible and medicinal plants and exerts a broad range of interesting pharmacological activities. Interactions with central inflammatory processes can be exploited to treat or attenuate symptoms of disorders associated with chronic immune activation during infections, malignancies, and neurodegenerative or cardiovascular disorders. Many drugs, phytochemicals, and nutritional components target the catabolism of the essential amino acid tryptophan by indoleamine 2,3-dioxygenase 1 (IDO-1) for immunomodulation. We studied the effects of kaempferol by in vitro models with human peripheral blood mononuclear cells (PBMC) and THP-1 derived human myelomonocytic cell lines. Kaempferol suppressed interferon-γ dependent immunometabolic pathways: Formation of the oxidative stress biomarker neopterin and catabolism of tryptophan were inhibited dose-dependently in stimulated cells. In-silico docking studies revealed a potential interaction of kaempferol with the catalytic domain of IDO-1. Kaempferol stimulated nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-treated THP-1 cells, thereby increasing the mRNA expression of interleukin (IL) 1 beta, tumor necrosis factor, and nuclear factor kappa B subunit 1, while IL6 was downregulated. Data suggest that concerted effects of kaempferol on multiple immunologically relevant targets are responsible for its immunomodulatory activity. However, the immunosuppressive effects may be more relevant in a T-cell dominated context.

12.
J Comput Chem ; 41(10): 986-999, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31930547

RESUMEN

Alchemically derived free energies are artifacted when the perturbed moiety has a nonzero net charge. The source of the artifacts lies in the effective treatment of the electrostatic interactions within and between the perturbed atoms and remaining (partial) charges in the simulated system. To treat the electrostatic interactions effectively, lattice-summation (LS) methods or cutoff schemes in combination with a reaction-field contribution are usually employed. Both methods render the charging component of the calculated free energies sensitive to essential parameters of the system like the cutoff radius or the box side lengths. Here, we discuss the results of three previously published studies of ligand binding. These studies presented estimates of binding free energies that were artifacted due to the charged nature of the ligands. We show that the size of the artifacts can be efficiently calculated and raw simulation data can be corrected. We compare the corrected results with experimental estimates and nonartifacted estimates from path-sampling methods. Although the employed correction scheme involves computationally demanding continuum-electrostatics calculations, we show that the correction estimate can be deduced from a small sample of configurations rather than from the entire ensemble. This observation makes the calculations of correction terms feasible for complex biological systems. To show the general applicability of the proposed procedure, we also present results where the correction scheme was used to correct independent free energies obtained from simulations employing a cutoff scheme or LS electrostatics. In this work, we give practical guidelines on how to apply the appropriate corrections easily.


Asunto(s)
Electricidad Estática , Artefactos , Sitios de Unión , ADN/química , Distamicinas/química , Ligandos , Simulación de Dinámica Molecular , Netropsina/química , Solventes/química , Termodinámica , Inhibidores de Tripsina/química
13.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31689114

RESUMEN

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacocinética , Bencimidazoles/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cristalografía por Rayos X , Ciclización , Entropía , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Femenino , Hepatocitos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Mutación , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacocinética , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285596

RESUMEN

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
15.
Chem Biodivers ; 16(5): e1800435, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30702795

RESUMEN

The small molecules that bind to DNA minor groove are considered as potential therapeutic agents to fight against many human diseases. They induce cell death by interfering with transcription, replication and progression of cell cycle. Herein, we report the synthesis of imidazopyridine-3-amines using sulfated ceria catalyst by employing Groebkee-Blackburne-Bienayme reaction. We evaluated the possible antiproliferative and antimycobacterial activity against A549 cells and Mycobacterium tuberculosis, respectively. Among the tested compounds, N-tert-butyl-2-(2-butyl-4-chloro-1H-imidazol-5-yl)-5,7-dimethylimidazo[1,2-a]pyridin-3-amine (4g) was identified as cytotoxic heterocycle and antimycobacterial agent. Molecular docking studies of the imidazopyridine derivatives revealed the consistent positioning in the minor groove with a tight shape fit between receptor and ligands. Therefore, we speculate that new imidazopyridines induce their pharmacological effect by targeting the minor groove of DNA.


Asunto(s)
Antituberculosos/síntesis química , Cerio/química , ADN/química , Imidazoles/química , Piridinas/química , Células A549 , Antituberculosos/química , Antituberculosos/farmacología , Sitios de Unión , Catálisis , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclización , ADN/metabolismo , Humanos , Imidazoles/síntesis química , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Netropsina/química , Netropsina/metabolismo , Conformación de Ácido Nucleico , Piridinas/síntesis química , Piridinas/farmacología , Relación Estructura-Actividad , Sulfatos/química
16.
J Chem Inf Model ; 59(1): 137-148, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30532974

RESUMEN

The protozoan cysteine proteases cruzain in Trypanosoma cruzi and rhodesain in Trypanosoma brucei are therapeutic targets for Chagas disease and Human African Trypanosomiasis (HAT), respectively. A benzimidazole series was previously characterized as potent noncovalent competitive cruzain and rhodesain inhibitors with activity against trypanosomes. Common structure-activity relationships (SAR) trends and structural modifications leading to selectivity against each enzyme were described. However, some of these trends could not be understood based on the reported binding mode of lead compound 1. Therefore, we employed microsecond molecular dynamics simulations and free energy calculations to understand qualitative SAR trends and to quantitatively recapitulate them. Simulations revealed the most stable protein-ligand interactions and provided insights concerning enzyme selectivity. Calculated relative binding free energies of compound 1 analogs exhibited deviations of 1.1 and 2.2 kcal/mol from the experimental values for cruzain and rhodesain, respectively. These data encourage prospective thermodynamic integration (TI) studies to optimize this series and facilitate the prioritization of compounds for synthesis.


Asunto(s)
Bencimidazoles/química , Inhibidores de Cisteína Proteinasa/química , Simulación del Acoplamiento Molecular , Trypanosoma brucei brucei/enzimología , Animales , Cisteína Endopeptidasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
17.
ChemMedChem ; 14(1): 88-93, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30458062

RESUMEN

Mouse double minute 2 (MDM2) is a main and direct inhibitor of the crucial tumor suppressor p53. Reports from initial clinical trials showed that blocking this interaction with a small-molecule inhibitor can have great value in the treatment of cancer for patients with p53 wild-type tumors; however, it also revealed dose-limiting hematological toxicities and drug-induced resistance as main issues. To overcome the former, an inhibitor with superior potency and pharmacokinetic properties to ultimately achieve full efficacy with less-frequent dosing schedules is required. Toward this aim, we optimized our recently reported spiro-oxindole inhibitors by focusing on the crucial interaction with the amino acid side chain of His96MDM2 . The designed molecules required the targeted synthesis of structurally complex spiro[indole-3,2'-pyrrolo[2,3-c]pyrrole]-2,4'-diones for which we developed an unprecedented intramolecular azomethine ylide cycloaddition and investigated the results by computational methods. One of the new compounds showed superior cellular potency over previously reported BI-0252. This finding is a significant step toward an inhibitor suitable to potentially mitigate hematological on-target adverse effects.


Asunto(s)
Compuestos Azo/farmacología , Indoles/farmacología , Pirrolidinonas/farmacología , Compuestos de Espiro/farmacología , Tiosemicarbazonas/farmacología , Animales , Compuestos Azo/química , Línea Celular Tumoral , Cristalografía por Rayos X , Ciclización , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirrolidinonas/síntesis química , Pirrolidinonas/química , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad , Tiosemicarbazonas/química , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(44): E10505-E10514, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30309962

RESUMEN

Human BCL-2-associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Supervivencia Celular/efectos de los fármacos , Piperazinas/farmacología , Serina/química , Proteína Letal Asociada a bcl/antagonistas & inhibidores , Antineoplásicos/química , Apoptosis , Benzamidas/química , Proliferación Celular , Bases de Datos Factuales , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Humanos , Células MCF-7 , Fosforilación , Piperazinas/química , Interferencia de ARN , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie
19.
J Mol Recognit ; 31(10): e2727, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29785722

RESUMEN

Serine proteases of the Chymotrypsin family are structurally very similar but have very different substrate preferences. This study investigates a set of 9 different proteases of this family comprising proteases that prefer substrates containing positively charged amino acids, negatively charged amino acids, and uncharged amino acids with varying degree of specificity. Here, we show that differences in electrostatic substrate preferences can be predicted reliably by electrostatic molecular interaction fields employing customized GRID probes. Thus, we are able to directly link protease structures to their electrostatic substrate preferences. Additionally, we present a new metric that measures similarities in substrate preferences focusing only on electrostatics. It efficiently compares these electrostatic substrate preferences between different proteases. This new metric can be interpreted as the electrostatic part of our previously developed substrate similarity metric. Consequently, we suggest, that substrate recognition in terms of electrostatics and shape complementarity are rather orthogonal aspects of substrate recognition. This is in line with a 2-step mechanism of protein-protein recognition suggested in the literature.


Asunto(s)
Serina Proteasas/metabolismo , Sitios de Unión , Unión Proteica , Serina Proteasas/química , Electricidad Estática , Especificidad por Sustrato
20.
J Chem Inf Model ; 58(5): 982-992, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29652495

RESUMEN

Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.


Asunto(s)
Compuestos Macrocíclicos/química , Simulación de Dinámica Molecular , Péptidos/química , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA