Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JCI Insight ; 9(7)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441970

RESUMEN

Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.


Asunto(s)
Células Endoteliales , Neoplasias , Animales , Ratones , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230673

RESUMEN

The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.

3.
Cancers (Basel) ; 11(8)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382462

RESUMEN

Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.

4.
Oncotarget ; 8(13): 20865-20880, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28209916

RESUMEN

Clinical studies have suggested a survival benefit in ovarian cancer patients with type 2 diabetes mellitus taking metformin, however the mechanism by which diabetic concentrations of metformin could deliver this effect is still poorly understood. Platelets not only represent an important reservoir of growth factors and angiogenic regulators, they are also known to participate in the tumor microenvironment implicated in tumor growth and dissemination. Herein, we investigated if diabetic concentrations of metformin could impinge upon the previously reported observation that platelet induces an increase in the tube forming capacity of endothelial cells (angiogenesis) and upon ovarian cancer cell aggressiveness. We demonstrate that metformin inhibits the increase in angiogenesis brought about by platelets in a mechanism that did not alter endothelial cell migration. In ovarian cancer cell lines and primary cultured cancer cells isolated from the ascitic fluid of ovarian cancer patients, we assessed the effect of combinations of platelets and metformin upon angiogenesis, migration, invasion and cancer sphere formation. The enhancement of each of these parameters by platelets was abrogated by the present of metformin in the vast majority of cancer cell cultures tested. Neither metformin nor platelets altered proliferation; however, metformin inhibited the increase in phosphorylation of focal adhesion kinase induced by platelets. We present the first evidence suggesting that concentrations of metformin present in diabetic patients may reduce the actions of platelets upon both endothelial cells and cancer cell survival and dissemination.


Asunto(s)
Plaquetas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Ováricas/sangre , Neoplasias Ováricas/patología , Células Tumorales Cultivadas
5.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27679502

RESUMEN

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Asunto(s)
Andrógenos/farmacología , Homeostasis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Androgénicos/metabolismo , Androstanoles/metabolismo , Androsterona/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dihidrotestosterona/química , Dihidrotestosterona/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética
6.
Stem Cell Res Ther ; 7(1): 150, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724984

RESUMEN

BACKGROUND: Recently, it has been observed that mesenchymal stem cells (MSCs) can modulate their immunoregulatory properties depending on the specific in-vitro activation of different Toll-like receptors (TLR), such as TLR3 and TLR4. In the present study, we evaluated the effect of polyinosinic:polycytidylic acid (poly(I:C)) and lipopolysaccharide (LPS) pretreatment on the immunological capacity of MSCs in vitro and in vivo. METHODS: C57BL/6 bone marrow-derived MSCs were pretreated with poly(I:C) and LPS for 1 hour and their immunomodulatory capacity was evaluated. T-cell proliferation and their effect on Th1, Th17, and Treg differentiation/activation were measured. Next, we evaluated the therapeutic effect of MSCs in an experimental autoimmune encephalomyelitis (EAE) model, which was induced for 27 days with MOG35-55 peptide following the standard protocol. Mice were subjected to a single intraperitoneal injection (2 × 106 MSCs/100 µl) on day 4. Clinical score and body weight were monitored daily by blinded analysis. At day 27, mice were euthanized and draining lymph nodes were extracted for Th1, Th17, and Treg detection by flow cytometry. RESULTS: Pretreatment of MSCs with poly(I:C) significantly reduced the proliferation of CD3+ T cells as well as nitric oxide secretion, an important immunosuppressive factor. Furthermore, MSCs treated with poly(I:C) reduced the differentiation/activation of proinflammatory lymphocytes, Th1 and Th17. In contrast, MSCs pretreated with LPS increased CD3+ T-cell proliferation, and induced Th1 and Th17 cells, as well as the levels of proinflammatory cytokine IL-6. Finally, we observed that intraperitoneal administration of MSCs pretreated with poly(I:C) significantly reduced the severity of EAE as well as the percentages of Th1 and Th17 proinflammatory subsets, while the pretreatment of MSCs with LPS completely reversed the therapeutic immunosuppressive effect of MSCs. CONCLUSIONS: Taken together, these data show that pretreatment of MSCs with poly(I:C) improved their immunosuppressive abilities. This may provide an opportunity to better define strategies for cell-based therapies to autoimmune diseases.


Asunto(s)
Diferenciación Celular/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Factores Inmunológicos/inmunología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Receptores Toll-Like/metabolismo , Animales , Diferenciación Celular/inmunología , Proliferación Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Factores Inmunológicos/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Activación de Linfocitos/inmunología , Activación de Linfocitos/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Receptores Toll-Like/inmunología
7.
Cytotherapy ; 18(5): 630-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27059200

RESUMEN

BACKGROUND AIMS: Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. METHODS: C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. RESULTS: poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. CONCLUSIONS: These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Colitis/terapia , Trasplante de Células Madre Mesenquimatosas , Poli I-C/farmacología , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Humanos , Lipopolisacáridos , Prueba de Cultivo Mixto de Linfocitos , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Cordón Umbilical/citología
8.
Bol. Hosp. Viña del Mar ; 46(3/4): 15-21, 1990.
Artículo en Español | LILACS | ID: lil-98072

RESUMEN

Se presentan los resultados de los primeros estudios cromosómicos hechos en el Laboratorio de Citogenética, creado en 1989, en el hospital Dr. Gustavo Fricke


Asunto(s)
Humanos , Cariotipificación , Chile , Aberraciones Cromosómicas/diagnóstico , Bandeo Cromosómico , Asesoramiento Genético , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA