RESUMEN
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Asunto(s)
Halobacteriaceae , Halorrodopsinas , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Resonancia Magnética Nuclear Biomolecular , Cloruros/química , Cloruros/metabolismo , Luz , Conformación Proteica , Procesos Fotoquímicos , Espectroscopía de Resonancia Magnética , Modelos MolecularesRESUMEN
ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.
Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Hidrólisis , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Dominio Catalítico , Conformación ProteicaRESUMEN
A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.
Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfaRESUMEN
Abnormal expansions of GGGGCC repeat sequence in the noncoding region of the C9orf72 gene is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). The expanded repeat sequence is translated into dipeptide repeat proteins (DPRs) by noncanonical repeat-associated non-AUG (RAN) translation. Since DPRs play central roles in the pathogenesis of C9-ALS/FTD, we here investigate the regulatory mechanisms of RAN translation, focusing on the effects of RNA-binding proteins (RBPs) targeting GGGGCC repeat RNAs. Using C9-ALS/FTD model flies, we demonstrated that the ALS/FTD-linked RBP FUS suppresses RAN translation and neurodegeneration in an RNA-binding activity-dependent manner. Moreover, we found that FUS directly binds to and modulates the G-quadruplex structure of GGGGCC repeat RNA as an RNA chaperone, resulting in the suppression of RAN translation in vitro. These results reveal a previously unrecognized regulatory mechanism of RAN translation by G-quadruplex-targeting RBPs, providing therapeutic insights for C9-ALS/FTD and other repeat expansion diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/patología , ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Drosophila/genéticaRESUMEN
A fundamental question in protein evolution is whether nature has exhaustively sampled nearly all possible protein folds throughout evolution, or whether a large fraction of the possible folds remains unexplored. To address this question, we defined a set of rules for ß-sheet topology to predict novel αß-folds and carried out a systematic de novo protein design exploration of the novel αß-folds predicted by the rules. The designs for all eight of the predicted novel αß-folds with a four-stranded ß-sheet, including a knot-forming one, folded into structures close to the design models. Further, the rules predicted more than 10,000 novel αß-folds with five- to eight-stranded ß-sheets; this number far exceeds the number of αß-folds observed in nature so far. This result suggests that a vast number of αß-folds are possible, but have not emerged or have become extinct due to evolutionary bias.
Asunto(s)
Pliegue de Proteína , Proteínas , Estructura Secundaria de Proteína , Proteínas/química , Conformación Proteica en Lámina betaRESUMEN
Favipiravir (brand name Avigan), a widely known anti-influenza prodrug, is metabolized by endogenous enzymes of host cells to generate the active form, which exerts inhibition of viral RNA-dependent RNA polymerase activity; first, favipiravir is converted to its phosphoribosylated form, favipiravir-ribofuranosyl-5'-monophosphate (favipiravir-RMP), by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Because this phosphoribosylation reaction is the rate-determining step in the generation of the active metabolite, quantitative and real-time monitoring of the HGPRT-catalyzed reaction is essential to understanding the pharmacokinetics of favipiravir. However, assay methods enabling such monitoring have not been established. 19 F- or 31 P-based nuclear magnetic resonance (NMR) are powerful techniques for observation of intermolecular interactions, chemical reactions, and metabolism of molecules of interest, given that NMR signals of the heteronuclei sensitively reflect changes in the chemical environment of these moieties. Here, we demonstrated direct, sensitive, target-selective, nondestructive, and real-time observation of HGPRT-catalyzed conversion of favipiravir to favipiravir-RMP by performing time-lapse 19 F-NMR monitoring of the fluorine atom of favipiravir. In addition, we showed that 31 P-NMR can be used for real-time observation of the identical reaction by monitoring phosphorus atoms of the phosphoribosyl group of favipiravir-RMP and of the pyrophosphate product of that reaction. Furthermore, we demonstrated that NMR approaches permit the determination of general parameters of enzymatic activity such as Vmax and Km . This method not only can be widely employed in enzyme assays, but also may be of use in the screening and development of new favipiravir-analog antiviral prodrugs that can be phosphoribosylated more efficiently by HGPRT, which would increase the intracellular concentration of the drug's active form. The techniques demonstrated in this study would allow more detailed investigation of the pharmacokinetics of fluorinated drugs, and might significantly contribute to opening new avenues for widespread pharmaceutical studies.
Asunto(s)
Profármacos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Imagen de Lapso de Tiempo , Amidas , Espectroscopía de Resonancia Magnética , CatálisisRESUMEN
The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).
Asunto(s)
Bases de Datos de Compuestos Químicos , Espectroscopía de Resonancia Magnética , Bases de Datos de Proteínas , Resonancia Magnética Nuclear Biomolecular , Conformación ProteicaRESUMEN
Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.
RESUMEN
Structure-based high-throughput screening of chemical compounds that target protein-protein interactions (PPIs) is a promising technology for gaining insight into how plant development is regulated, leading to many potential agricultural applications. At present, there are no examples of using high-throughput screening to identify chemicals that target plant transcriptional complexes, some of which are responsible for regulating multiple physiological functions. Florigen, a protein encoded by FLOWERING LOCUS T (FT), was initially identified as a molecule that promotes flowering and has since been shown to regulate flowering and other developmental phenomena such as tuber formation in potato (Solanum tuberosum). FT functions as a component of the florigen activation complex (FAC) with a 14-3-3 scaffold protein and FD, a bZIP transcription factor that activates downstream gene expression. Although 14-3-3 is an important component of FAC, little is known about the function of the 14-3-3 protein itself. Here, we report the results of a high-throughput in vitro fluorescence resonance energy transfer (FRET) screening of chemical libraries that enabled us to identify small molecules capable of inhibiting FAC formation. These molecules abrogate the in vitro interaction between the 14-3-3 protein and the OsFD1 peptide, a rice (Oryza sativa) FD, by directly binding to the 14-3-3 protein. Treatment with S4, a specific hit molecule, strongly inhibited FAC activity and flowering in duckweed, tuber formation in potato, and branching in rice in a dose-dependent manner. Our results demonstrate that the high-throughput screening approach based on the three-dimensional structure of PPIs is suitable in plants. In this study, we have proposed good candidate compounds for future modification to obtain inhibitors of florigen-dependent processes through inhibition of FAC formation.
Asunto(s)
Florigena , Oryza , Florigena/metabolismo , Proteínas de Plantas/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Ensayos Analíticos de Alto Rendimiento , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genéticaRESUMEN
Proton translocation through the membrane-embedded Fo component of F-type ATP synthase (FoF1) is facilitated by the rotation of the Fo c-subunit ring (c-ring), carrying protons at essential acidic amino acid residues. Cryo-electron microscopy (Cryo-EM) structures of FoF1 suggest a unique proton translocation mechanism. To elucidate it based on the chemical conformation of the essential acidic residues of the c-ring in FoF1, we determined the structure of the isolated thermophilic Bacillus Fo (tFo) c-ring, consisting of 10 subunits, in membranes by solid-state NMR. This structure contains a distinct proton-locking conformation, wherein Asn23 (cN23) CγO and Glu56 (cE56) CδOH form a hydrogen bond in a closed form. We introduced stereo-array-isotope-labeled (SAIL) Glu and Asn into the tFoc-ring to clarify the chemical conformation of these residues in tFoF1-ATP synthase (tFoF1). Two well-separated 13C signals could be detected for cN23 and cE56 in a 505 kDa membrane protein complex, respectively, thereby suggesting the presence of two distinct chemical conformations. Based on the signal intensity and structure of the tFoc-ring and tFoF1, six pairs of cN23 and cE56 surrounded by membrane lipids take the closed form, whereas the other four in the a-c interface employ the deprotonated open form at a proportion of 87%. This indicates that the a-c interface is highly hydrophilic. The pKa values of the four cE56 residues in the a-c interface were estimated from the cN23 signal intensity in the open and closed forms and distribution of polar residues around each cE56. The results favor a rotation of the c-ring for ATP synthesis.
Asunto(s)
Bacillus , Adenosina Trifosfato/metabolismo , Bacillus/metabolismo , Microscopía por Crioelectrón , Ácido Glutámico , Conformación Proteica , Subunidades de Proteína/química , ATPasas de Translocación de Protón/metabolismo , ProtonesRESUMEN
In potato (Solanum tuberosum L.), 14-3-3 protein forms a protein complex with the FLOWERING LOCUS T (FT)-like protein StSP6A and the FD-like protein StFDL1 to activate potato tuber formation. Eleven 14-3-3 isoforms were reported in potato, designated as St14a-k. In this study, the crystal structure of the free form of St14f was determined at 2.5 Å resolution. Three chains were included in the asymmetric unit of the St14f free form crystal, and the structural deviation among the three chain structures was found on the C-terminal helix H and I. The St14f free form structure in solution was also investigated by nuclear magnetic resonance (NMR) residual dipolar coupling analysis, and the chain B in the crystal structure was consistent with NMR data. Compared to other crystal structures, St14f helix I exhibited a different conformation with larger B-factor values. Larger B-factor values on helix I were also found in the 14-3-3 free form structure with higher solvent contents. The mutation in St14f Helix I stabilized the complex with StFDL1. These data clearly showed that the flexibility of helix I of 14-3-3 protein plays an important role in the recognition of target protein.
Asunto(s)
Solanum tuberosum , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/genéticaRESUMEN
The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here, we identify PBI1, a protein that interacts with PUB44. Crystal structure analysis indicates that PBI1 forms a four-helix bundle structure. PBI1 also interacts with WRKY45, a master transcriptional activator of rice immunity, and negatively regulates its activity. PBI1 is degraded upon perception of chitin, and this is suppressed by silencing of PUB44 or expression of XopP, indicating that PBI1 degradation depends on PUB44. These data suggest that PBI1 suppresses WRKY45 activity when cells are in an unelicited state, and during chitin signaling, PUB44-mediated degradation of PBI1 leads to activation of WRKY45. In addition, chitin-induced MAP kinase activation is required for WRKY45 activation and PBI1 degradation. These results demonstrate that chitin-induced activation of WRKY45 is regulated by the cooperation between MAP kinase-mediated phosphorylation and PUB44-mediated PBI1 degradation.
Asunto(s)
Oryza , Quitina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Protein fibrillation and human neurodegenerative diseases, with a profound underlying connection suggested between them, have been the subject of intense investigations in the medical, biophysical and bio-engineering sciences. For gaining the molecular mechanistic insights into such connection, i.e., the cause and effect, atomic-resolution molecular structure information especially on the initial oligomeric states is of paramount importance, not only that on the mature amyloid fibrils. α-Synuclein (αSyn) and its amyloid fibril has a direct relevance to the Parkinson's disease and other synucleinopathies, but what triggers the fibrillation is still not entirely clear. We here describe the liquid-liquid phase separation (LLPS) of αSyn and investigate its conformational evolution from its monomeric state into oligomer state within the early-stage of the phase-separated droplets, mainly using solution and magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopies, aided with optical and fluorescent microscopies and CD spectroscopy. Based on the analysis of the intricately broadened shapes of the MAS NMR peaks observed for isotopically 13C-labeled His-50 of αSyn, we show that the distribution of the αSyn conformation is skewed from the initial completely random state to a loose ß-rich ensembles at/around His-50 as early as day-3 (d3) within the droplet. This intra-droplet loose ß-rich assembly showed a very slow progression until d8, and eventually maturated into ThT-positive, long and unbranched amyloid fibrils after 8 weeks. The obtained information on the evolution of the distribution of the conformation ensemble is unique, and difficult to obtain with X-ray crystallography and cryo-electron microscopy (cryoEM). In particular, the sensitivity-enhanced MAS NMR based on the low-temperature dynamic nuclear polarization (DNP) technique was proven to be a key tool in characterizing the conformational ensemble with dilute protein samples such as the liquid-phase droplets.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Amiloide/química , Microscopía por Crioelectrón , Humanos , Espectroscopía de Resonancia Magnética/métodos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
The low sensitivity of NMR spectroscopy is of historical concern in the field, and various approaches have been developed to mitigate this limitation. On the shoulder of giants, today one can routinely implement, for example, the pulse/Fourier transform NMR with the cross polarization together with the ultra-low temperature MAS DNP under high-field conditions. We show in this work this current opportunity should further be augmented by combining them with the cryogenic signal amplification. Our presented MAS DNP probe operates with the closed-cycle helium MAS system, and cools the internal preamplifier-duplexer module with the "return" helium gas on its way back to the compressor in the loop. The signal-to-noise (S/N) gain relative to the room-temperature measurements of a factor of 4.6 and 2.4 was found for the measurement using the cold- and room-temperature preamplifier, respectively, at the sample temperature of T = 20 K at B0 = 16.4 T. The ratio of these factors reveals â¼ two-fold sensitivity improvement that results purely from the introduction of the cold signal amplification, i.e., noise reduction. Together with the increase of the thermal Boltzmann polarization at low temperatures, the combined S/N gain of max. â¼70-fold is possible without DNP. The DNP enhancement factor of â¼40 as we found in this work for a microcrystalline MLF sample may be multiplied to this gain. We also demonstrated the sensitivity improvement with a 13C-detected 2D NCaCx spectrum, illustrating the generality of the S/N gain from combining DNP with the cold signal amplification.
Asunto(s)
Frío , Helio , Helio/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , TemperaturaRESUMEN
NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.
Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Calorimetría/instrumentación , Calorimetría/métodos , Humanos , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/instrumentación , Simulación de Dinámica Molecular , Nanoestructuras/química , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Volumetría/instrumentación , Volumetría/métodosRESUMEN
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB-related secondary database data, original web-based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM-Arc for computational structure models, and XRDa for raw X-ray diffraction images, both of which promote open science in the structural biology community. During the COVID-19 pandemic, PDBj has also started to provide feature pages for COVID-19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID-19 outreach content for high school students and teachers.
Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Animales , Aniversarios y Eventos Especiales , COVID-19/metabolismo , Humanos , Japón , Modelos Moleculares , Conformación Proteica , Proteínas/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Programas Informáticos , Interfaz Usuario-Computador , Proteínas Virales/química , Proteínas Virales/metabolismoRESUMEN
Importin α has been described as a nuclear protein transport receptor that enables proteins synthesized in the cytoplasm to translocate into the nucleus. Besides its function in nuclear transport, an increasing number of studies have examined its non-nuclear transport functions. In both nuclear transport and non-nuclear transport, a functional domain called the IBB domain (importin ß binding domain) plays a key role in regulating importin α behavior, and is a common interacting domain for multiple binding partners. However, it is not yet fully understood how the IBB domain interacts with multiple binding partners, which leads to the switching of importin α function. In this study, we have distinguished the location and propensities of amino acids important for each function of the importin α IBB domain by mapping the biochemical/physicochemical propensities of evolutionarily conserved amino acids of the IBB domain onto the structure associated with each function. We found important residues that are universally conserved for IBB functions across species and family members, in addition to those previously known, as well as residues that are presumed to be responsible for the differences in complex-forming ability among family members and for functional switching.
Asunto(s)
alfa Carioferinas , beta Carioferinas , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismoRESUMEN
Covalent linking of side chains provides a method to produce cyclic or stapled peptides that are important in developing peptide-based drugs. A variety of crosslinking formats contribute to fixing the active conformer and prolonging its biological activity under physiological conditions. One format uses the cysteine thiol to participate in crosslinking through nucleophilic thiolate anions or thiyl radicals to form thioether and disulfide bonds. Removal of the S-protection from an S-protected Cys derivative generates the thiol, which functions as a nucleophile. S-Oxidation of a protected Cys allows the formation of a sulfoxide that operates as an umpolung electrophile. Herein, the applicability of S-p-methoxybenzyl Cys sulfoxide (Cys(MBzl)(O)) to the formation of a thioether linkage between tryptophan and Cys has been investigated. The reaction of peptides containing Cys(MBzl)(O) and Trp with trifluoromethanesulfonic acid (TFMSA) or methanesulfonic acid (MSA) in TFA in the presence of guanidine hydrochloride (Gn â HCl) proceeded to give cyclic or stapled peptides possessing the Cys-Trp thioether linkage. In this reaction, strong acids such as TFMSA or MSA are necessary to activate the sulfoxide. Additionally, Gn â HCl plays a critical role in producing an electrophilic Cys derivative that combines with the indole by aromatic electrophilic substitution. The findings led us to conclude that the less-electrophilic Cys(MBzl)(O) serves as an acid-activated umpolung of a Cys nucleophile and is useful for S-arylation-mediated peptide cyclization.
Asunto(s)
Cisteína , Sulfóxidos , Ciclización , PéptidosRESUMEN
The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-AMSP ) by solution NMR. Six of eight peptides are specifically bound to VAP-A. Furthermore, we found that the RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 has an FFAT-like motif which specifically binds to VAP-AMSP as well as other FFAT-like motifs. Our results will contribute to the discovery of new VAP interactors.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/química , Péptidos/química , SARS-CoV-2/enzimología , Proteínas de Transporte Vesicular/química , Secuencias de Aminoácidos , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Unión Proteica , SARS-CoV-2/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMEN
The structural dynamics of the chromo-shadow domain (CSD) and chromodomain (CD) of human HP1 proteins essential for heterochromatin formation were investigated at the nanosecond and nanometer scales by site-directed spin labeling electron paramagnetic resonance and pulsed double resonance spectroscopy. Distance measurements showed that the spin-labeled CSD of human HP1α and HP1γ tightly dimerizes. Unlike CD-CD interaction observed in fission yeast HP1 in an inactivated state (Canzio et al., 2013), the two CDs of HP1α and HP1γ were spatially separated from each other, dynamically mobile, and ready for a Brownian search for H3K9-tri-methyl(me3) on histones. Complex formation of the CD with H3K9me3 slowed dynamics of the domain due to a decreased diffusion constant. CSD mobility was significantly (â¼1.3-fold) lower in full-length HP1α than in HP1γ, suggesting that the immobilized conformation of human HP1α shows an auto-inactivated state. Differential properties of HP1α and HP1γ to form the inactive conformation could be relevant to its physiological role in the heterochromatin formation in a cell.